لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 23 صفحه
قسمتی از متن .doc :
جدول مربوط به FF و FP و مقادیر ارائه شده برای Re در آن جدول است. به عنوان مثال برای Reهای بالاتر از 300 معمولا در روش Bell در محاسبه فاکتورها جریان را آشفته فرض می کنیم که ممکن است با ملاکهای قبلی برای Re تفاوت داشته باشد. که در بررسی جداول بیشتر با آن آشنا می شویم.
بررسی متد تینکر بر میزان و بررسی جریان نشتی است. میدانیم مبدلی یک مدل ایده آل است که هیچگونه جریان نشتی نداشته باشد. زیرا وجود جریان نشتی باعث کاهش میزان انتقال حرارت می گردد.
روش تینکر(Tinker):
جریانات نشتی در یک مبدل عبارتند از:
جریان نشتی بین لوله و بقل
جریان نشتی بین OTL و پوسته
جریان نشای بین بقل و پوسته
جریان نشتی به علت وجود صفحه جداکننده
هر چه میزان نشت سیال بیشتر باشد میزان ضریب انتقال حرارت کاهش پیدا می کند. به همین دلیل طراحی مبدل ها در متد بل مقادیر موجود در درجه اول با لحاظ کردن میزان نشتی در نظر گرفته شده اند.
در زیر شکل کلی جریانات نشتی ممکن در یک مبدل و همچنین نمای کلی یک پوسته را می بینید.
شکل 5-1- مسیرهای نشتی در داخل یک مبدل پوسته- لوله ای
متدبل براساس داده های اطلاعاتی و جداول آنها مورد بررسی قرار می گیرد در متد بل از فرضیات متد تینکر استفاده شده است. جداول متد بل برای مبدل های مختلف و شرایط مختلف در صفحات بعد آورده شده است.
1- اگر فقط یکی از b.sهای ابتدایی با انتهایی بزرگتر از دیگری بود میزان FE از همین جدول خوانده می شود با این تفاوت که Nb مورد استفاده عبارتند از:
+0.5](تعداد بافل های واقعی) Nb=2
2- این حدول برای جریان آشفته در بخشهای متقاطع مرکزی است اگر رژیم جریان آرام باشد داریم:
+1 در حالت آشفته = FE: برای جریان آرام
2
مبدل ایده آل مراه با دسته لوله ایده آل می باشد. بدین صورت که دسته لوله ایده آل طبق تعریف دارای مقطع مستطیلی است مثل Air Coolers که دارای دسته لوله مستطیل شکل است. رابطه محاسباتی آن عبارتند از:
FF و FP از جداول قبل محاسبه شده و FNL فاکتور محاسباتی دسته لوله ایده آل است.
برای ضریب انتقال حرارت پوسته
برای افت فشار
محاسبات مربوط به پوسته F:
تاکنون تمام محتسبات برای پوسته نوع E بوده است. در طراحی با تغییر نوع پوسته محاسبات کمی تغییر می کند همانطور که می دانیم در اشکال قبل معین است پوسته نوع F دارای بافل های طول است که باعث افزایش تعداد گذرهای پوسته در مبدل میگردد. در مقایسه بین پوسته نوع F,E می توان به نکات زیر دست پیدا کرد.
تعداد بافل های پوسته F دو برابر تعداد بافل های پوسته E است
سطح تماس سیال با لوله ها در پوسته F نصف تماس در پوسته E در یک سطح مقطع معین است.
با توجه به مورد فوق سرعت سیال در پوسته F دو برابر پوسته E است. (VF=2VE)
با توجه به روابط ضریب انتقال حرارت در پوسته داریم:
و این یعنی اینکه: P(سرعت جریان متقاطع) در نتیجه که با توجه به می توان نتیجه گرفت که
به همین ترتیب روابطی را برای محاسبه خواهیم داشت که این روابط عبارتند از:
مقادیر r,q,p با توجه به جریان و تجربه حاصل شده اند.
که این مقادیر عبارتند از:
آرام آشفته
36/0 64/0 P
1 75/1 q
1 2 r
نتیجه برای محاسبات پوسته نوع F کافی است که همان محاسبات پوسته E را صورت دهیم و در فرمول های فوق قرار دهیم.
رسوب گرفتگی(Fouling)
رسوب گرفتگی یک مبدل بستگی به نوع ماده و سیال مورد استفاده در داخل لوله و یا داخل پوسته دارد هر چه سیال کثیف تر و رسوب زاتر باشد اثر جرم گرفتگی آن بیشتر می باشد به طور کلی جرم گرفتگی یک مبدل بستگی به نوع مبدل- زمان کارکرد مبدل و سیال مورد استفاده مبدل دارد. رسوب گرفتگی باعث کاهش ضریب انتقال حرارت میشود این امر به دلیل آن است که لایه رسوب یک عامل مزاحم در سر راه انتقال حرارت است به همین دلیل در محاسبات مربوط به تعیین ضریب انتقال حرارت در یک مبدل داریم:
پس در نتیجه:
ارتعاش(Vibration):
یکی از مهمترین پارامترهای طراحی ارتعاش دسته لوله است. ارتعاش دسته لوله باعث می گردد که سر و صدای مبدل افزایش یابد و در اثر ارتعاش دسته لوله بریده شده و به مبدل آسیب میرساند عواملی چون برخورد دسته لوله ها به هم، بریدگی دسته لوله از محل اتصال جوش آن و یا از بین رفتن اتصال جوش آن و یا از بین رفتن اتصال پرچ شده باعث شکستگی دسته لوله می گردد. هر جسم یک فرکانس طبیعی مربوط به خود دارد در صورتیکه موج با همان فرکانس به دسته لوله برسد باعث ارتعاش جسم می گردد به چنین فرکانس طبیعی جسم می گویند فرکانس طبیعی بستگی به جنس و شکل و ساختمان جسم دارد.
معمولا جریان سیال داخل پوسته است که باعث ارتعاش دسته لوله میگردد مکانیزم های ارتعاش عبارتند از:
ضربه های گردابه ای(Vortex shedding)
ضربه های متناوب جریان آشفته(Turbulent buffeting)
چرخش الاستیکی جریان سیال(Parallel flow eddy formation)
سه مورد اول در مورد جریان متقاطع است و مورد آخر در مورد جریان محوری دسته لوله می باشد.
به دلیل اول در مورد متقاطع است و مورد آخر جریان محوری دسته لوله می باشد.
به دلیل اهمیت مکانیزم اول به بحث این مکانیزم می پردازیم.
هنگامیکه سیال به صورت عمودی روی دسته لوله میریزد در پایین دسته لوله میریزد در پایین دسته لوله جریان منطقه wake ظاهر می گردد که گردابه ها شروع به فعالیت میکند. در این منطقه یک ناحیه خلاء وجود دارد که گردابه ها به منطقه خلاء نیرو وارد میکند یک سری نیروها عمودیند و یک سری از نیروها افقی می باشند مرحله ارتعاش دسته لوله هنگامی است که:
Fv=fn
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 7
نیروگاه حرارتی
مقدمه
نیروگاه حرارتی جهت تولید انرژی الکتریکی بکار میرود که در عمل پرههای توربین بخار توسط فشار زیاد بخار آب ، به حرکت در آمده و ژنراتور را که با توربین کوپل شده است، به چرخش در میآورد. در نتیجه ژنراتور انرژی الکتریکی تولید میکند. نیروگاه حرارتی به مقدار زیادی آب نیاز دارد. در نتیجه در محلهایی که آب به فراوانی یافت میشود، ترجیحا از این نوع نیروگاه استفاده میشود. چون انرژی الکتریکی را به روشهای دیگری ، مثل انرژی آب در پشت سدها (توربین آبی) ، انرژی باد (توربین بادی) ، انرژی سوخت (توربین گازی) و انرژی اتمی هم میتوان تهیه کرد. سوخت نیروگاه حرارتی شامل ، فروت و یا گازوئیل طبیعی است.
مشخصات فنی نیروگاه
سوخت
سوخت اصلی نیروگاه ، سوخت سنگین (مازوت) میباشد که توسط تانکرها حمل و از طریق ایستگاه تخلیه سوخت در سه مخزن 33000 متر مکعبی ذخیره میگردد. سوخت راه اندازی ، سوخت سبک (گازوئیل) است که در یک مخزن 430 متر مکعبی نگهداری میشود.
آب
آب مصرفی نیروگاه ، جهت تولید بخار و مصرف برج خنک کن و سیستم آتش نشانی ، از طریق چاه عمیق تامین میگردد.
سیستم خنک کن
برج خنک کن نیروگاه از نوع تر میباشد و 18 عدد فن (خنک کن) دارد که هر یک دارای الکتروموتوری به قدرت 132kw و سرعت سرعت 141RPM میباشد و بوسیله دو عدد پمپ توسط لولهای به قطر 5.2 متر آب مورد نیاز خنک کن تامین میگردد. دمای آب برگشتی در برج خنک کن 29.6 درجه سانتیگراد و دمای آب خروجی از برج 21.6 درجه سانتیگراد میباشد.
سیستم تصفیه آب
سیستم تصفیه آب جهت برج خنک کن
آب لازم جهت برج خنک کن بایستی فاقد املاحی باشد که سریعا در لولههای کندانسور رسوب میکنند (از قبیل بیکربناتها). این املاح با افزودن کلرورفریک ، آب آهک و آلومینات سدیم گرفته میشود و سپس رسوبات جمع شده توسط یک جاروب جمع کننده به بیرون منتقل میشوند. به این آب که بدون سختی بی کربنات باشد، آب نرم میگویند. آب نرم وارد دو استخر ذخیره شده و از آنجا توسط پمپهایی جهت تامین کمبود آب به برج خنک کن فرستاده میشود. برای از بین بردن خزه و جلبک در این استخر ، سیستم تزریق کلر طراحی شده است.
سیستم تصفیه آب جهت تولید بخار
چون آب مورد نیاز برای تولید بخار و جبران کمبود سیکل آب و بخار بایستی کیفیت بسیار بالایی داشته باشد، لذا برای این منظور از یک سیستم مشترک برای هر دو واحد استفاده میشود. بعد از اینکه مقداری از سختی آب گرفته شد، وارد سه دستگاه فیلتر شنی میشود، سپس به مخزن ذخیره وارد و از آنجا توسط سه عدد پمپ به طرف فیلتر کربنی فعال فرستاده میشود، تا کلر موجود در آب بوسیله زغال فعال جذب شود. بعد از این فیلتر یک مبدل حرارتی در نظر گرفته شده که دمای آب را در 25 درجه سانتیگراد ثابت نگه میدارد.
سپس این آب وارد دو دستگاه فیلتر 5 میکرونی شده و ذراتی که قطر آنها بیشتر از 5 میکرون میباشند، توسط این فیلترها جذب و وارد دو دستگاه ریورس اسمز میگردد. در این دستگاه 90% املاح محلول در آب گرفته میشود. آب پس از این مرحله وارد مخزن زیرزمینی میگردد. سپس توسط سه پمپ به فیلترهای کاتیونی و آنیونی وارد شده و پس از تنظیم PH و کنترل از نظر شیمیایی به مخازن ذخیره آب وارد و مورد استفاده قرار میگیرد.
بویلر
بویلر نیروگاه دارای درام بالائی و پائینی بوده و به صورت گردش اجباری توسط سه عدد پمپ سیرکوله (Boiler Circulation Watepump) و کوره ، تحت فشار میباشد. درام بالایی معمولا به وزن 110 تن در ارتفاع 50.6 متری و ضخامت جداره 11 سانتیمتر میباشد. بویلر دارای 16 مشعل هست که در چهار طبقه و در چهار گوشه با زاویه ثابت قرار گرفتهاند. مشعلهای ردیف پائین برای هر دو سوخت مازوت و گازوئیل بکار میرود.
توربین
نیروگاه از نوع ترکیب متوالی در یک امتداد (Tadem Compound) و دارای سه سیلندر فشار قوی ، فشار متوسط و فشار ضعیف میباشد که توربین فشار قوی و فشار متوسط در یک پوسته قرار گرفته و در پوسته دیگر توربینهای فشار ضعیف قرار دارند. توربین فشار قوی 8 طبقه و توربین فشار متوسط 5 طبقه و توربین فشار ضعیف با دو جریان متقارن و هر یک دارای 5 طبقه است. بخار از طریق دو عدد شیر اصلی در دو طرف توربین و شش عدد شیر کنترل وارد توربین فشار قوی شده و بعد از انبساط در چندین طبقه از توربین به بویلر بر میگردد. سپس وارد توربین فشار متوسط شده و بعد از انبساط توسط یک لوله مشترک وارد توریبن فشار ضعیف گردیده و به طرف کندانسور میرود.
کندانسور
کندانسور نیروگاه از نوع سطحی یک عبوری با جعبه آب مجزا میباشد که در زیر توریبن فشار ضعیف قرار گرفته است. برای ایجاد خلا کندانسور از دو نوع سیستم استفاده میشود که سیستم اول در موقع راه اندازی و توسط یک مکنده هوا انجام مییابد. در طول بهره برداری خلا لازم توسط دو دستگاه پمپ تامین میگردد که این پمپها فشار داخل کندانسور را کاهش میدهند.
ژنراتور
ژنراتور طوری طراحی شده است که در مقابل اتصال کوتاه و نوسانات ناگهانی بار و احیانا انفجار هیدروژن در داخل ماشین مقاومت کافی داشته باشد. سیستم تحریک آن شامل یک اکساتیر پیلوت (Pilot exiter) با ظرفیت 45 کیلوولت آمپر میباشد و جریان تحریک اکسایتر پیلوت در لحظه
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 10
عملیات حرارتی چدن نشکن
خلاصه: مهمترین عملیات حرارتی که روی چدن نشکن انجام می شود و هدف از انجام آنها : عملیات حرارتی که در دمای پایین برای کاهش یا آزاد کردن تنش های داخلی باقی مانده پس از ریخته گری انجام می شود. ● آنیل کردن عملیات حرارتی که برای بهبود انعطاف پذیری و چقرمگی ، کاهش سختی و حذف کاربیدها انجام می شود. ● نرماله کردن عملیات حرارتی که به منظور بهبود استحکام به همراه کمی انعطاف پذیری انجام می شود . ● سخت کردن و تمپر کردن عملیات حرارتی که به منظور افزایش سختی یا بهبود استحکام و بالا بردن نسبت تنش (تنش تسلیم) انجام می شود . ● آستمپر کردن عملیات حرارتی که به منظور بدست آمدن ساختاری با استحکام بالا به همراه کمی انعطاف پذیری و مقاومت به سایش عالی انجام می شود
. ● سخت کردن سطحی به وسیله ی القاء ، شعله یا لیزر عملیات حرارتی که به منظور مقاوم به سایش ساختن و سخت کردن موضعی سطح انتخاب شده انجام می شود . در این مقاله عملیات آنیلینگ ، نرماله کردن ، آستمپر کردن ، کونچ کردن و تمپر کردن چدن نشکن شرح داده می شود. آستنیته کردن چدن نشکن هدف معمول آستنیته کردن این است که تا حد امکان زمینه ی آستنیتی با مقدار کربن یکسان قبل از پروسه ى حرارتى تولید شود. به عنوان مثال در چدن نشکن هیپریوتکتیک برای آستنیته کردن باید از دماى بحرانى کمی بالاتر برویم به طورى که دماى آستنیته در منطقه ى دو فازى ( آستنیت و گرافیت ) باشد. دماى آستنیته کردن به وسیله ى عناصر آلیاژى موجود در چدن نشکن تغییر مى کند
با افزایش دمای آستنیته کردن می توان آستنیت تعادلی حاوى کربن که در حال تعادل با گرافیت است را افزایش داد. که این پارامتر قابل انتخاب است( در زمان محدود). کربن موجود در زمینه ی آستنیتی کنترل دمای آستنیته کردن را مهم ساخته که این دما به منظور جلو بردن واکنش به مقدار زیادی به کربن موجود در زمینه ی آستنیتی بستگی دارد ، این ساختار مخصوصاً برای آستمر کردن ساخته می شود ، سختی پذیری (قابلیت آستمپر کردن ) به میزان زیادی به کربن موجود در زمینه و در واقع به عناصر الیاژی موجود در چدن نشکن بستگی دارد ، میکرو ساختار اصلی و سطح مقطع قطعه تعیین کننده ی زمان مورد نیاز برای آستنیته کردن می باشند مراحل بعد از آستنیته کردن هنگامی که مورد اهمیت باشند عبارتند از : آنیل کردن ، نرماله کردن کونچ و تمپر کردن و آستمپر کردن . آنیلینگ چدن نشکن هنگامی که حداکثر انعطاف پذیری و قابلیت ماشینکاری عالی مورد نیاز باشد و استحکام بالا مورد نیاز نباشد ، عموماً چدن نشکن آنیل فریتی می شود . بدین گونه که میکروساختار به فریت متحول می شود و کربن اضافی به صورت می باشد، اگر ماشینکاری عالی مورد 60-40-18 نوع ASTM کروی رسوب می کند. این عملیات حرارتی ساخته ی نیاز باشد باید مقدار منگنز ، فسفر و عناصر آلیاژی از قبیل کرم و مولیبدن درحد امکان پایین باشد زیرا باعث آهسته کردن پروسه ی آنیل می شوند . نحوه ی آنیل کردن توصیه شده برای چدن نشکن آلیاژی و چدن نشکن با کاربید یوتکتیک و بدو ن کاربید یوتکتیک در پایین شرح داده شده است : آنیل کامل برای چدن نشکن با 2%-3% سیلیسیم و بدون کاربید یوتکتیک : گرم کردن تا دمای 870- 900 درجه ی سانتی گراد و نگهدار ی در این دما به مدت 1 ساعت در ازای هر اینچ ضخامت ،سپس سرد کردن در کوره با سرعت 55 درجه سانتی گراد در ساعت تا دمای 345 درجه ی سانتی گراد سپس سرد کردن در هوا. آنیل کامل در صورت وجود کاربید یوتکتیک : گرم کردن تا دمای900C-870C و نگهداری در این دما برای 2 ساعت و بیشتر از این زمان برای ضاخمت های زیاد ، سپس سرد کردن در کوره با سرعت 110C/hتا دمای 700Cو نگهداری در این دما برای 2 ساعت ، سپس سرد کردن در کوره تا دمای 345Cبا سرعت 55C/h ، سپس سرد کردن در هوا . آنیل کردن زیر منطقه ی بحرانی برای تبدیل پرلیت به فریت: گرم کردن قطعات تا دمای705C-720Cونگهداری در این دما به مدت 1 ساعت در ازای هر اینچ ضخانت ، سپس سرد کردن در کوره با سرعت55C/h تا دمای 345C و سپس سرد کردن در هوا . وقتی که در چدن نشکن عناصر آلیاژی وجود داشته باشد از سرد کردن سرتاسری قطعه جلوگیری می شود و کاهش درجه حرارت از نقطه ی بحرانی تا400C ادامه می یابد و سرعت سرد کردن از55C/h کمتر می باشد . به هر حال برخی عناصر در شکل کاربید خود اگر تجزیه ناپذیر باشند به شکل کاربید اولیه که بسیار سخت است می باشندکه این حالت بیشتر در کرم می باشد ، به عنوان مثال% 0.25 کرم باعث تشکیل کاربید اولیه ی بین نشینی می شود که در اثر عملیات حرارتی تا دمای 925C و نگهداری در مدت2h-20h حتی نیز از بین نمی رود . زمینه ی حاصل از رسوب پرلیت ، زمینه ی فریتی با کاربید می باشد که فقط 5% ازیاد طول دارد . نمونه های دیگری از عناصر که به شکل کاربید در چدن نشکن وجود دارند عبارتند از مولیبدن بیشتر از 0.3% و وانادیم وتنگستن در مقدیر بیش از 0. سختی پذیری چدن نشکن
سختی پذیری چدن نشکن یک پارامتر مهم تعیین کننده ی واکنش ثابت آهن برای نرماله کردن ، کونچ کردن و تمپرکردن یا آستنیته کردن می باشد. سختی پذیری معمولاً به وسیله ی آزمایش جامینی تعیین می شود ، که در آن از یک میله با اندازه ی استاندارد (قطر 1 اینچ و ارتفاع 4 اینچ) استفاده می شود که آن را آستنیته می کنند سپس یک سر آن را به وسیله ی آب سرد می کنند ، نوسان در سرعت سرد کردن باعث بی ثباتی (متفاوت بودن) در میکروساختار می شود که سختی آنها تغییر می کند سپس آنها را تعیین و ثبت
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 46
عنوان :
انواع روشهای گرمایش و سرمایش در ساختمانهای مسکونی و تجاری
مقدمه:
تهیه محیط مناسب برای زندگی در فصول مختلف سال یک مسئله مهم است. انسان اولیه با شناختن آتش در کلبه ها و غارها ،ایجاد گرمای غیر سالم توام با دود ، تااندازه ای خود را در زمستان سرد حفظ میداشت و بعدها با گذاشتن دود کش ،هدایت دود بخاری با ساخت اولین بخاری دیواری انجام گرفت.رومیها به طریق بسیار جالبی ،یعنی گرم کردن کف ساختمانها بوسیله نصب کانالهای دود محیط را گرم می کردند،که هنوز در بعضی از نقاط آثار آن باقی است.
امروز یکی از سیستمهای معمول بنام گرمایش تشعشعی به تقلید از این روش مورد استفاده قرار می گیرد.با افزایش جمعیت جهان و محدود بودن منابع انرژیهای فسیلی ،نیاز به بررسی و تحقیق بیشتر در رسیدن به راههای عملی و صحیح بهره برداری از این انرژیها ،فرایندی است که می بایست با دقت هر چه تمامترانجام گیرد.
در این فصل علاوه بر اشاره به روشهای مختلف گرمایش و سرمایش ،بررسی در مورد روشهای صرفه جویی و همچنین جلوگیری از اتلافات حرارتی و برودتی
صورت خواهد گرفت.
1-1- روشهای گرمایش ساختمان به صورت مجزا
در این روشها جهت گرمایش هوا در محیط داخلی ساختمان از منابع جداگانه نسبت به گرمایش آب مصرفی روزانه استفاده شده و گرمایش آب مصرفی و هوا ساختمان به صورت پیوسته نیست .
بطورطبیعی در این روش مصرف کننده های مختلف انرژی وجود خواهند داشت که به تفضیل توضیح داده خواهد شد.
1-1-1-گرم کردن هوای داخلی ساختمانهای مسکونی و تجاری (به صورت مجزا)
میدانیم که درجه حرارت بدن انسان ثابت بوده و 37 درجه سانتیگراد
می باشد.اصطکاکهای داخلی بدن همانند (جریان خون ، حرکت عضلات ) وعکس
ا لعملهای گرمازای داخلی در انسان تولید انرژی حرارتی کرده که باید به خارج دفع شود تا درجه حرارت بدن به علت افزایش این انرژی حرارتی بالا نرفته و همواره ثابت باشد.آزمایشات نشان میدهد که انسان در حال فعالیت کم ،وقتی احساس راحتی می کند که درجه حرارت و رطوبت نسبی محیط در شرایط مطبوع بوده و دفع انرژی حرارتی از بدن بدان گونه باشد که احساس نامطلوبی در شخص ایجاد نکند.
این شرایط در فصل زمستان و تابستان متفاوت است . وقتی درجه حرارت کمتر از این مقدار باشد بدن شخص در مقابل عکس العملهای گرمازا قرار گرفته و شخص احساس سرما خواهد کرد که در این حالت نیاز به گرمایش محیط داخلی ساختمان وجود خواهد داشت .
در جدول زیر شرایط جهت احساس مطلوب برای انسان در محیط داخلی ساختمان و در فصل زمستان مشخص شده است.
جدول (1-4):شرایط داخل ساختمان در زمستان[khasto,B; 1991]
محل
درجه حرارت استاندارد
محل
درجه حرارت استاندارد
سالن غذا خوری
20-18
تئاتر،سینما،رستوران
20
اطاق نشیمن
21-25
بیمارستان،اطاق عمل
35-21
هتل و اتاق خواب
21
بیمارستان،اتاق بیماران
21
حمام
27-21
کارخانجات با کار سبک
18-16
سرویسهای بهداشتی
20
کارخانجات باکارسنگین
16-10
آشپز خانه
18
مدرسه و سالن کنفرانس
20-18
راهرو
18-16
انبارها
18
دفتر کار
20
مدرسه،سالن کنفرانس
20-18
سالنهای ورزشی
18-13
اطاق رنگ کاری
27
اماکن عمومی
22-20
حمام بخار و سونا
43
جهت رسیدن به دمای مطلوب در ساختمانهای تجاری و مسکونی در سیستمهای مجزا استفاده از بخاریها می باشد.
انواع بخاریهایی که در حال حاضر در کشور ایران استفاده می شود به شرح زیر هستند:
بخاریهای گازی
بخاریهای نفتی
بخاریهای برقی
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 11 صفحه
قسمتی از متن .doc :
سیستمهای حرارتی و برودتی
جهت تهیه شرایط مناسب برای محیط زندگی و کار در فصول مختلف سال، وسائلی مورد استفاده قرار می گیرند که هر کدام نقش خاصی در سیستم تأسیساتی ایفاء می نمایند. به عبارت دیگر دستگاههائی جهت تولید انرژی گرمائی و سرمائی به کار برده می شوند انرژی آنها توسط خطوط انتقال به مراکز توزیع برده شده به وسائلی که عمل توزیع و پخش را انجام می دهند هوای مشروط را در داخل محیط فراهم می آورند.
وسائلی را که در سیستمهای مختلف تأسیساتی مورد استنفاده قرار می گیرند به طور کلی می توان به 4 بخش متمایز تقسیم نمود.
وسایل تولید انرژی گرمایی و سرمائی (حرارتی و برودتی) و دستگاههای تابعه (مانند دیگ و چیلر)
خطوط و وسائل انتقال انرژی ، (لوله کشی و کانال کشی، پمپ و هوا رسان)
وسائل تبادل و توزیع گرما و سرما، (رادیاتور، فن کویل، هواساز)
وسائل تولید انرژی حرارتی و برودتی
وسائل تولید حرارت (دیگر حرارت مرکزی)
از معمولترین مولدهای گرمائی، دیگر های حرارت مرکزی می باشند.
در دیگ ها انرژی حرارتی از سوخت (که توسط مشعل تولید حرارت می نماید) گرفته شده و به آب داده می شود.
دیگر های آب گرم
در این دیگ ها انرژی حرارتی تولید شده توسط مشعل، آب داغ را تولید می نماید و سعی می شود که از تولید بخار جلوگیری بعمل آید زیرا در این دیگر ها کنترل و سوپاپی جهت بخار ایجاد شده وجود ندارد و در صورت تولید بخار به دیگ آسیب می رسد.
ب- دیگهای بخار
مورد استفادة این دیگها در موارد زیر است:
در پروژه هائی با ظرفیت خیلی زیاد (معمولاً بیش از یک میلیون کالری در ساعت)
در مواردی که احتیاج به تولید بخار باشد (مانند بیمارستانها برای ضذعفونی کردن و آشپزخانه های بزرگ برای دم کردن غذا و لباسشوئی ها)
مواقعی که چیلر جذبی برای سرمایش سیستم استفاده می شود.
برای مصارف صنعتی
این مسأله قابل توجه است که هر کیلو بخار حدود 500 کیلوکالری حرارت منتقل می نماید.
در داخل این دیگ ها آب و بخار وجود داشته و آب به طور مرتب به بخار تبدیل شده و از طریق لولة خروجی به مصرف می رسد.
مشعل
تولید گرما در دیگ ها بوسیله مشعل صورت می پذیرد. مشعل ها معمولا با سوخت های مایع کار می کنند.
نحوة کار در مشعل های سوخت مایع بدین صورت است که ابتدا سوخت از منبع به مشعل هدایت شده و توسط پمپ مشعل، سرعت و فاشرش زیاد می گردد.
این سوخت تحت فشار از نازل (پستانک سوخت پاش) که در جلوی مشعل واقع شده به صورت پودر خارج می شود. در اثر اختلاط این سوخت و هوائی که توسط وانیلاتور مشعل به قسمت جلو مشعل رانده شده، عمل احتراق صورت می گیرد و تنوسط شعله پخش کن با جهت و حرکت مناسب، داخل دیگر را گرم می کند.
جرقة اولیه توسط دو الکترود که جلوی نازل نصب شده اند تولید می گردد. فاصلة بین دو میلة جرقه زن 3 تا 4 میلی متر و فاصلة جرقه زن تا نازل 6 میلی متر می باشد.
وسایل تولید جذبی (آبزرپشن)
این سیستم دارای یک ژنراتور حرارتی، کندانسور و اواپراتور می باشد. سیال مبرد (که در اینجا آب است) در ژنراتور به صورت بخار وارد کندانسور شده و در آنجا به مایع تبدیل می شود. سپس سیال در اواپراتور گرمای محیط را گرفته (بعبارتی دیگر سرما تولید می کند) سپس جذب مایع جاذب شده و از آنجا دوباره به ژنراتور باز می گردد. عملاً می توان گفت که جاذب، و ژنراتور در مدار بترتیب عمل مکش و رانش یک کمپرسور را انجام می دهند.
معمولاً در چیلر ابزرپشت، سیال مبرد آب و سیال جاذب لیتیوم برومید است.
البته هزینه سیستم جذبی نسبت به چیلرهای تراکمی بیشتر می باشد ولی با توجه به مخارج راه اندازی و تعمیر و نگهداری کم خرج و مخصوصاً مصرف برق خیلی کم آن که به مراتب از چیلرهای تراکمی پایین تر می باشد و همچنین مصرف سوخت ارزان (گاز با گازوئیل) و سادگی و عدم پیچیدگی سیستم در ظرفیت های زیاد مقرون به صرفه می باشد.
چیلر ابزرپشن با آب گرم تحت شرایط بخصوص برای تولید گرما در ژنراتور نیز مورد استفاده قرار می گیرد.
برج خنک کن
این برج خنک کنها داخل محوطه قرار دارند. گرمائی که در سیکل کار چیلر تولید شده در کندانسور چیلر، به آب داده می شود. آبی که بدین صورت گرم شده به برج خنک کن منتقل می گردد تا گرمای خود را در آنجا به محیط اطراف بدهد.
نحوة عمل در برج بدین ترتیب است که آب از بالا به پائین پاشیده می شود و در حین عبور از قسمتهای داخلی برج، با وزش هوا، قسمتی از گرمای آب به محیط داده می شود و مقداری از حرارت باقیمانده نیز ضمن تبحیر