لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 13 صفحه
قسمتی از متن .doc :
مبدل های حرارتی(Heat Exchangers)
مبدل های حرارتی بر اساس :
1_ پیوستگی یا تناوب جریان
2_ فرآیندانتقال
3_ فشردگی یا تناوب جریان
4 _ نحوه ساختمان و مشخصات هندسی آن
5 _ درجه حرارت کارکرد
6_ سازوکار انتقال حرارت
7_ تعداد سیال
8_ آرایش جریان
دسته بندی می شوند.
انواع مبدل های حرارتی بر اساس نوع ساختمان و نحوه عملکرد :
1-مبدل های حرارتی لوله ایtube" heat exchanger-"
این نوع از مبدل ها که در صنعت کاربرد بیشتری دارند خود به چند دسته ی مختلف تقسیم بندی می شوند :
1_ تک لوله ای
2_ دولوله ای
3_ لوله مار پیچ
4_ چند لوله ای
5_ لوله پوسته
مبدل حرارتی دو لوله ای Double tube" heat exchanger-"
ساده ترین نوع مبدلی که در صنعت ساخته می شود مبدل حرارتی دو لوله ای است که به آن مبدل سنجاق سری نیز گفته می شود . که از دو لوله ی هم محور و به شکل U تشکیل شده است . در این نوع مبدل یکی از سیال ها از درون لوله و سیال دیگر از مجاری بین دو لوله عبور می کند و به این ترتیب عمل انتقال حرارت صورت می پذیرد .
از مزایای این نوع مبدل ها می توان به ساخت آسان و هزینه نسبتا کم ، محاسبات و طراحی آسان ، کنترل ساده جریان های سیال در دو مسیر ، نگهداری و تمیز کردن آسان و کاربرد در فشارهای زیاد اشاره کرد .
در صنعت معمولا برای سیالاتی که رسوب زا هستند از این نوع مبدل ها استفاده می شود .
مبدل های حرارتی لوله مارپیچ ("hellflow splral" heat exchanger)
این نوع ازمبدل های حرارتی از یک یا چند حلقه لوله مارپیچ تشکیل شده اند که ابتدا وانتهای این لوله مارپیچ به لوله اصلی ورودی و خروجی متصل می شود و محفظه ای اطراف آن را می پوشاند . معمولا جنس لوله های مارپیچ از فولاد کربن دار یا مس و آلیاژ های آن یا فولاد زنگ نزن و آلیاژهای نیکل می باشد .
معمولا ابعاد این دسته از مبدل ها در مقایسه با سایر مبدل های لوله ای کمتر است زیرا انتقال حرارت در مسیر های منحنی و پیچ دار بیشتر از مسیر مستقیم است .
از معایب و مزایای این نوع از مبدل ها می توان به موارد زیر اشاره کرد :
معایب :
1_ به دلیل کوچک بودن لوله مار پیچ تعمیر و جوشکاری آنها مشکل و زمان بر است
2_ بدلیل مارپیچ بودن لوله ها تمیز کردن انها عملا مشکل است
مزایا :
1_ راندمان بالا
2_ مونتاژ آسان
3_ مقاومت مکانیکی در مقابل انبساط و انقباض
4_ مناسب برای دبی های کم و بارهای حرارتی پایین
مبدل حرارتی مبدل حرارتی برای انتقال حرارت موثر بین دو سیال (گاز یا مایع) به دیگری استفاده می گردد. مبدل های حرارتی در صنایع مختلف از جمله تهویه متبوع، خودرو، نفت و گاز و بسیاری صنایع دیگر مورد استفاده قرار می گیرند.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 23 صفحه
قسمتی از متن .doc :
جدول مربوط به FF و FP و مقادیر ارائه شده برای Re در آن جدول است. به عنوان مثال برای Reهای بالاتر از 300 معمولا در روش Bell در محاسبه فاکتورها جریان را آشفته فرض می کنیم که ممکن است با ملاکهای قبلی برای Re تفاوت داشته باشد. که در بررسی جداول بیشتر با آن آشنا می شویم.
بررسی متد تینکر بر میزان و بررسی جریان نشتی است. میدانیم مبدلی یک مدل ایده آل است که هیچگونه جریان نشتی نداشته باشد. زیرا وجود جریان نشتی باعث کاهش میزان انتقال حرارت می گردد.
روش تینکر(Tinker):
جریانات نشتی در یک مبدل عبارتند از:
جریان نشتی بین لوله و بقل
جریان نشتی بین OTL و پوسته
جریان نشای بین بقل و پوسته
جریان نشتی به علت وجود صفحه جداکننده
هر چه میزان نشت سیال بیشتر باشد میزان ضریب انتقال حرارت کاهش پیدا می کند. به همین دلیل طراحی مبدل ها در متد بل مقادیر موجود در درجه اول با لحاظ کردن میزان نشتی در نظر گرفته شده اند.
در زیر شکل کلی جریانات نشتی ممکن در یک مبدل و همچنین نمای کلی یک پوسته را می بینید.
شکل 5-1- مسیرهای نشتی در داخل یک مبدل پوسته- لوله ای
متدبل براساس داده های اطلاعاتی و جداول آنها مورد بررسی قرار می گیرد در متد بل از فرضیات متد تینکر استفاده شده است. جداول متد بل برای مبدل های مختلف و شرایط مختلف در صفحات بعد آورده شده است.
1- اگر فقط یکی از b.sهای ابتدایی با انتهایی بزرگتر از دیگری بود میزان FE از همین جدول خوانده می شود با این تفاوت که Nb مورد استفاده عبارتند از:
+0.5](تعداد بافل های واقعی) Nb=2
2- این حدول برای جریان آشفته در بخشهای متقاطع مرکزی است اگر رژیم جریان آرام باشد داریم:
+1 در حالت آشفته = FE: برای جریان آرام
2
مبدل ایده آل مراه با دسته لوله ایده آل می باشد. بدین صورت که دسته لوله ایده آل طبق تعریف دارای مقطع مستطیلی است مثل Air Coolers که دارای دسته لوله مستطیل شکل است. رابطه محاسباتی آن عبارتند از:
FF و FP از جداول قبل محاسبه شده و FNL فاکتور محاسباتی دسته لوله ایده آل است.
برای ضریب انتقال حرارت پوسته
برای افت فشار
محاسبات مربوط به پوسته F:
تاکنون تمام محتسبات برای پوسته نوع E بوده است. در طراحی با تغییر نوع پوسته محاسبات کمی تغییر می کند همانطور که می دانیم در اشکال قبل معین است پوسته نوع F دارای بافل های طول است که باعث افزایش تعداد گذرهای پوسته در مبدل میگردد. در مقایسه بین پوسته نوع F,E می توان به نکات زیر دست پیدا کرد.
تعداد بافل های پوسته F دو برابر تعداد بافل های پوسته E است
سطح تماس سیال با لوله ها در پوسته F نصف تماس در پوسته E در یک سطح مقطع معین است.
با توجه به مورد فوق سرعت سیال در پوسته F دو برابر پوسته E است. (VF=2VE)
با توجه به روابط ضریب انتقال حرارت در پوسته داریم:
و این یعنی اینکه: P(سرعت جریان متقاطع) در نتیجه که با توجه به می توان نتیجه گرفت که
به همین ترتیب روابطی را برای محاسبه خواهیم داشت که این روابط عبارتند از:
مقادیر r,q,p با توجه به جریان و تجربه حاصل شده اند.
که این مقادیر عبارتند از:
آرام آشفته
36/0 64/0 P
1 75/1 q
1 2 r
نتیجه برای محاسبات پوسته نوع F کافی است که همان محاسبات پوسته E را صورت دهیم و در فرمول های فوق قرار دهیم.
رسوب گرفتگی(Fouling)
رسوب گرفتگی یک مبدل بستگی به نوع ماده و سیال مورد استفاده در داخل لوله و یا داخل پوسته دارد هر چه سیال کثیف تر و رسوب زاتر باشد اثر جرم گرفتگی آن بیشتر می باشد به طور کلی جرم گرفتگی یک مبدل بستگی به نوع مبدل- زمان کارکرد مبدل و سیال مورد استفاده مبدل دارد. رسوب گرفتگی باعث کاهش ضریب انتقال حرارت میشود این امر به دلیل آن است که لایه رسوب یک عامل مزاحم در سر راه انتقال حرارت است به همین دلیل در محاسبات مربوط به تعیین ضریب انتقال حرارت در یک مبدل داریم:
پس در نتیجه:
ارتعاش(Vibration):
یکی از مهمترین پارامترهای طراحی ارتعاش دسته لوله است. ارتعاش دسته لوله باعث می گردد که سر و صدای مبدل افزایش یابد و در اثر ارتعاش دسته لوله بریده شده و به مبدل آسیب میرساند عواملی چون برخورد دسته لوله ها به هم، بریدگی دسته لوله از محل اتصال جوش آن و یا از بین رفتن اتصال جوش آن و یا از بین رفتن اتصال پرچ شده باعث شکستگی دسته لوله می گردد. هر جسم یک فرکانس طبیعی مربوط به خود دارد در صورتیکه موج با همان فرکانس به دسته لوله برسد باعث ارتعاش جسم می گردد به چنین فرکانس طبیعی جسم می گویند فرکانس طبیعی بستگی به جنس و شکل و ساختمان جسم دارد.
معمولا جریان سیال داخل پوسته است که باعث ارتعاش دسته لوله میگردد مکانیزم های ارتعاش عبارتند از:
ضربه های گردابه ای(Vortex shedding)
ضربه های متناوب جریان آشفته(Turbulent buffeting)
چرخش الاستیکی جریان سیال(Parallel flow eddy formation)
سه مورد اول در مورد جریان متقاطع است و مورد آخر در مورد جریان محوری دسته لوله می باشد.
به دلیل اول در مورد متقاطع است و مورد آخر جریان محوری دسته لوله می باشد.
به دلیل اهمیت مکانیزم اول به بحث این مکانیزم می پردازیم.
هنگامیکه سیال به صورت عمودی روی دسته لوله میریزد در پایین دسته لوله میریزد در پایین دسته لوله جریان منطقه wake ظاهر می گردد که گردابه ها شروع به فعالیت میکند. در این منطقه یک ناحیه خلاء وجود دارد که گردابه ها به منطقه خلاء نیرو وارد میکند یک سری نیروها عمودیند و یک سری از نیروها افقی می باشند مرحله ارتعاش دسته لوله هنگامی است که:
Fv=fn