حریم فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

حریم فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

تحقیق درمورد ریخته گری و عملیات حرارتی آلیاژهای منیزیم

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 21

 

ریخته گری و عملیات حرارتی آلیاژهای منیزیم

چکیده

منیزیم فلزی است سبک با قابلیت های ویژه، این فلز معمولاً بصورت آلیاژ در صنعت مورد استفاده قرار می گیرد و آلیاژهای آن معمولاً در دمای ذوب با هوا واکنش داده و اکسید می شوند. برای جلوگیری از واکنش منیزیم مذاب با اکسیژن هوا باید از کوره های مخصوص ذوب فلزات استفاده کرد که در آنها هوا جریان نداشته باشد و با افزدن ترکیبات خاص به مذاب و مواد قالبگیری حتی الامکان را اکسید شدن مذاب جلوگیری بعمل آید و با طراحی مناسب سیستم راهگاهی نیز می توان تا حد زیادی از مذاب محافظت نمود، بطوری که در جریان پر شدن قالب واکنشی بین مذاب و دیواره قالب صورت نگیرد و از تلاطم مذاب جلوگیری شود. آلیاژهای صنعتی منیزیم معمولاً با دو سیکل T4 و T6 عملیات حرارتی می شوند تا قابلیت و خواص مکانیکی و متالوژیکی آنها به بالاترین حد خود برسد.

مقدمه

در این مقاله سعی بر آن است که با معرفی آلیاژهای منیزیم و با توجه به کاربرد وسیع این آلیاژ در صنایع هوا فضا، یکی از راههای شکل دادن به این فلز که ریخته گیری آلیاژهای آن می باشد را بصورت مختصر مورد بررسی قرار داده و سیکل های عملیات حرارتی که روی این آلیاژها اعمال می شود تا حد امکان معرفی نماییم. ریخته گری آلیاژهای منیزیم از آن حائز اهمیت است که در دمای ذوب شدیداً اکسید شده و میسوزد، که مهار این امر تکنولوژی پیچیده و خاصی را طلب می کند.

آشنایی با خواص منیزیم

منیزیم فلزی است نقره ای رنگ، با ساختمان کریستالی منشور فشرده ، که نقطه ذوب آن 651 درجه سانتیگراد و نقطه جوش آن 1105 درجه سانتیگراد در فشار atm 1 میباشد.

دانسیته منیزیم 1/74gr/cm3 می باشد که تقریباً 3/2 دانسیته آلومینیوم، 3/1 روی و 4/1 فولاد است و در جاهایی از صنعت که کاهش وزن بحرانی است، جذابیت بخصوصی را برای کاربرد آلیاژهایش بوجود می آورد.

منیزیم در بین فلزات سبک یک فلز بسیار نیرومند است، در حقیقت دارای بهترین نرخ استحکام به وزن در بین فلزات ریختگی متداول است.

علاوه بر این منیزیم دارای مزایای بسیار دیگری نظیر، قابلیت جذب ارتعاش خوب، قابلیت خوب ریختگی، قابلیت خوب ماشین کاری و مقاومت به خوردگی بالا می باشد. منیزیم مانند سایر عناصر و بخصوص به دلیل شدت میل ترکیبی و خواص مکانیکی پایین ، کمتر بصورت خالص در صنعت مورد استفاده قرار می گیرد آلیاژهای مختلف آن با روی و آلومینیم و گاه زیر کونیم در موارد متعدد صنعت و بخصوص در صنایع هواپیمائی بکار می روند.

علاوه بر شدت اکسیداسیون در درجه حرارتهای بالا و فشار بخار زیاد، میل ترکیبی این عنصر با کلروفلوئور، ازت و گوگرد دلیل استفاده آن، بعنوان احیاء کننده و تصفیه کننده در صنایع ریخته گری می باشد، که خواص مذکور ذوب منیزیم و آلیاژهای ریختگی ک از طریق مختلف ریخته گری در ماسه، قالب فلزی و تحت فشار تولید می شوند، تقسیم می گردند.

آلیاژهای مختلف منیزیم به دو دسته آلیاژهای نوردی که در روشهای مختلف ورق کاری، نورد و اکستروژن بکار می روند و آلیاژهای ریختگی که از طرق مختلف ریخته گری در ماسه، قالب فلزی و تحت فشار تولید می شوند، تقسیم می گردند.

آلیاژهای ریختگی منیزیم محدود می باشند و عمدتاً آلیاژهای حاوی آلومینیم و روی بالاترین کاربرد را دارند، بعنوان مثال آلیاژ AZ91 ؛ با 9 درصد آلومینیوم و 1 درصد روی بهترین قابلیت های ریخته گیری را دارا می باشد و در این مقاله نیز با توجه به محدودیتهای موجود بصورت اجمالی به بررسی آلیاژهای منیزیم که حاوی آلومینیم و روی می باشند می پردازیم.

بررسی تأثیر آلومینیم و روی در منیزیم

آلومینیم عنصر اصلی و بسیار مهم در اکثر آلیاژهای منیزیم می باشد که افزایش خواص مکانیکی را در آلیاژ حاصل می نماید. حداکثر حلالیت آلومینیم در منیزیم 1/12% و حداقل حدود 5/1% می باشد. آلومینیم در درجه حرارتهای مختلف در منیزیم فازها و ساختارهای متفاوتی ایجاد می کند، از جمله Al2 Mg3 یا Al3Mg4 و فاز Al12Mg17 که از استحکام خوبی برخوردار است و تمایل شدید به جدایش درمرکز کریستالی را دارا می باشد.

وجود آلومینیم در آلیاژ امکان تشکیل آخالهای مختلف از جمله اسپینل MgO و Al2O3 را که یکی از ناخواسته های سخت و شکننده می باشد تسریع می نماید و مانع از سیالیت و سهولت ریخته گری می شود و همچنین قابلیت جذب گاز هیدروژن و افزایش سطح تخلخل های میکروسکوپی و ماکروسکپی را در آلیاژ القاء می نماید. از طرفی فلز روی که اغلب همراه با آلومینیم و سایر عناصر در ساخت ترکیبی آلیاژهای منیزیم بکار می رود مانند آلومینیم و حتی به میزان کمتر از آن در درجه حرارت محیط درمنیزیم حل می گردد.



خرید و دانلود تحقیق درمورد ریخته گری و عملیات حرارتی آلیاژهای منیزیم


تحقیق در مورد مبدل‌های حرارتی 4 ص

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 4 صفحه

 قسمتی از متن .doc : 

 

مبدل‌های حرارتی

مبدل‌های حرارتی، دستگاه‌هایی هستند که به کمک آنها می‌توان در اثر تماس غیرمستقیم دو سیال، سیالی را سرد یا گرم کرد. در مورد این که کدام یک از دو سیال داخل لوله و کدام یک خارج لوله و در پوسته جریان داشته باشد، می‌توان معیارهای زیر را مدنظر قرار داد.

بهتر است سیال با ظرفیت حرارتی بیشتر در لوله داخلی و سیال با ظرفیت کمتر در لوله خارجی باشد، چون با نصب ظرفیت فین (پره) در لوله خارجی می‌توان ضریب کلی انتقال حرارت (U) را افزایش داد.

سیال خورنده در لوله داخلی جریان داشته باشد تا در اثر نشت احتمالی به محیط نشت نکند.

بهتر است فاز سمی در لوله داخلی جریان داشته باشد تا در اثر نشت احتمالی به محیط نشت نکند.

سیالی که دمای آن به دمای محیط نزدیک‌تر است، در لوله خارجی باشد.

سیالی که تمایل به رسوب‌گذاری بیشتری دارد در لوله خارجی باشد.

مطابق شکل 1-1، برای محاسبه انتقال حرارت بین دو سیال می‌توان از روابط زیر استفاده نمود:

qA = mA cPA (T2 – T1)A

qB = mB cPB (T1 – T2)B

q = AU∆TLn

 

AU = AoUo = AiUi

 

= LMTD

که در این رابطه، U ضریب کلی انتقال حرارت، Ui ضریب کلی انتقال حرارت مربوط به سطح داخلی و ∆Tln متوسط لگاریتمی اختلاف دما (Log Mean Temperature Difference) می‌باشد.

شکل 1-1 مبدل حرارتی دو لوله‌ای و مدار الکتریکی مشابه آن

آرایش مختلف جریان‌ها در مبدل‌های حرارتی در شکل 1-2 آورده شده است. در این شکل، محور افقی تمام حالت‌ها معرف طول مبدل می‌باشد.

در مورد تبخیرکنننده حالت (و) می‌توان گفت که جریان با دمای بالاتر انرژی خود را به جریان خنک‌تر می‌دهد و باعث به جوش آوردن جریان با درجه حرارت پایین در درجه حرارت ثابت می‌شود، به‌طور مشابه در حالت (د) این وضعیت برقرار است.

برای داشتن سرعت بیشتر، لوله‌های کوتاهتر و کاهش مشکل انبساط از مبدل‌های چند مسیره استفاده می‌شود.

شکل 1-2 آرایش مختلف جریان‌ها در مبدل‌های حرارتی

همانطور که قبلاً اشاره شد، رابطه بالا برای مبدل‌های حرارتی دو لوله‌ای صادق است، ولی اگر مبدل به صورت‌های دیگر (مبدل با یک پوسته و با مضربی از دو مسیر لوله، با دو پوسته و با مضربی از چهار مسیر لوله، مبدل حرارتی با جریان عمود بر هم یک مسیره که هر دو سیال غیرمخلوط هستند و ...) باشد مقدار گرمای انتقال یافته از رابطه زیر به دست می‌آید.

q = AUF∆Tln

که F ضریب تصحیح بوده و مقدار F برای انواع مختلفی از دیاگرام‌های مربوط به دست می‌آید. طراحی مبدل (محاسبه سطح مبدل) در صورت منوط به انجام حدس و خطاست، ولی با تعریف کارایی مبدل حرارتی، این طراحی آسان‌تر صورت می‌گیرد. این روش که ناسلت آن را پایه‌گذاری کرد به نام روش تعداد واحدهای انتقال (N.T.U یا Number of Transfer Unit) معروف است. در ادامه به طور خلاصه به این روش پرداخته می‌شود:

انتقال حرارت واقعی

= کارایی مبدل حرارتی =

ماکزیمم انتقال حرارت

با توجه به این‌که q = CH(THi – Tho) = CC(TCo – Tci) (توجه شود که C=m.c که c ظرفیت حرارتی است). به راحتی می‌توان دریافت که هر جریان که دارای بیشتری اختلاف دما باشد، باید کمترین C را نیز داشته باشد. یعنی:

Cc > Cmin یا CH > CC ( ∆Tc > ∆TH (1 اگر

CH > Cmin یا CC > CH ( ∆TH > ∆Tc (2 اگر

چون در تعریف کارآیی، برای ماکزیمم انتقال حرارت (مخرج تعریف) سطح مبدل را بی‌نهایت تصور می‌کنیم. پس دمای خروجی جریان سرد (در حالت CH > CC) می‌تواند به دمای ورودی جریان گرم برسد (به‌طور مشابه دمای خروجی جریان گرم در حالت CH

شکل 1-3 توزیع دما در مبدل مختلف جریان سرد بیشترین اختلاف دما را دارد.

اهمیت این رابطه در طراحی این است که فقط احتیاج به دانستن دماهای ورودی جریان گرم و سرد است، البته به شرط آن که کارایی مبدل حرارتی () معلوم باشد.

محاسبات ریاضی نشان داده است که کارآیی مبدل‌ها فقط تابعی از نسبت‌های می‌باشد که U ضریب کلی انتقال حرارت و A سطح مبدل حرارتی است، دو حالت بسیار ساده زیر موید این مطلب است:

در صورتی که در مبدل مختلف الجهت C=1 باشد، داریم:

 

در صورتی که کندانسور و یا تبخیرکننده داشته باشیم، ملاحظه شد که دمای یک جریان ثابت می‌ماند، در مورد این جریان C = 0 or Cmax ( ∞

 

در ضمن هرچه NTU بیشتر شود، کارایی مبدل بیشتر می‌شود، به شرط آن که در مورد مبدل‌های هم‌جهت مقدار NTU از سه و در مبدل‌های مختلف‌الجهت مقدار NTU از 5 بیشتر نباشد. کاهش نسبت نیز بر افزایش کارایی مبدل اثر دارد، ولی این کاهشِ نسبت نمی‌تواند تا صفر شدن دبی یکی از جریان‌ها ادامه یابد، چرا که در این صورت از مبدل تنها یک جریان عبور می‌کند که با اساس کار مبدل منافات دارد.

منـــبــــع:

معاضد، محمدتقی و دیگران، مهندسی شیمی، انتشارات ارکان، زمستان 1379



خرید و دانلود تحقیق در مورد مبدل‌های حرارتی 4 ص


تحقیق در مورد مبدل‌های حرارتی 4 ص

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 4 صفحه

 قسمتی از متن .doc : 

 

مبدل‌های حرارتی

مبدل‌های حرارتی، دستگاه‌هایی هستند که به کمک آنها می‌توان در اثر تماس غیرمستقیم دو سیال، سیالی را سرد یا گرم کرد. در مورد این که کدام یک از دو سیال داخل لوله و کدام یک خارج لوله و در پوسته جریان داشته باشد، می‌توان معیارهای زیر را مدنظر قرار داد.

بهتر است سیال با ظرفیت حرارتی بیشتر در لوله داخلی و سیال با ظرفیت کمتر در لوله خارجی باشد، چون با نصب ظرفیت فین (پره) در لوله خارجی می‌توان ضریب کلی انتقال حرارت (U) را افزایش داد.

سیال خورنده در لوله داخلی جریان داشته باشد تا در اثر نشت احتمالی به محیط نشت نکند.

بهتر است فاز سمی در لوله داخلی جریان داشته باشد تا در اثر نشت احتمالی به محیط نشت نکند.

سیالی که دمای آن به دمای محیط نزدیک‌تر است، در لوله خارجی باشد.

سیالی که تمایل به رسوب‌گذاری بیشتری دارد در لوله خارجی باشد.

مطابق شکل 1-1، برای محاسبه انتقال حرارت بین دو سیال می‌توان از روابط زیر استفاده نمود:

qA = mA cPA (T2 – T1)A

qB = mB cPB (T1 – T2)B

q = AU∆TLn

 

AU = AoUo = AiUi

 

= LMTD

که در این رابطه، U ضریب کلی انتقال حرارت، Ui ضریب کلی انتقال حرارت مربوط به سطح داخلی و ∆Tln متوسط لگاریتمی اختلاف دما (Log Mean Temperature Difference) می‌باشد.

شکل 1-1 مبدل حرارتی دو لوله‌ای و مدار الکتریکی مشابه آن

آرایش مختلف جریان‌ها در مبدل‌های حرارتی در شکل 1-2 آورده شده است. در این شکل، محور افقی تمام حالت‌ها معرف طول مبدل می‌باشد.

در مورد تبخیرکنننده حالت (و) می‌توان گفت که جریان با دمای بالاتر انرژی خود را به جریان خنک‌تر می‌دهد و باعث به جوش آوردن جریان با درجه حرارت پایین در درجه حرارت ثابت می‌شود، به‌طور مشابه در حالت (د) این وضعیت برقرار است.

برای داشتن سرعت بیشتر، لوله‌های کوتاهتر و کاهش مشکل انبساط از مبدل‌های چند مسیره استفاده می‌شود.

شکل 1-2 آرایش مختلف جریان‌ها در مبدل‌های حرارتی

همانطور که قبلاً اشاره شد، رابطه بالا برای مبدل‌های حرارتی دو لوله‌ای صادق است، ولی اگر مبدل به صورت‌های دیگر (مبدل با یک پوسته و با مضربی از دو مسیر لوله، با دو پوسته و با مضربی از چهار مسیر لوله، مبدل حرارتی با جریان عمود بر هم یک مسیره که هر دو سیال غیرمخلوط هستند و ...) باشد مقدار گرمای انتقال یافته از رابطه زیر به دست می‌آید.

q = AUF∆Tln

که F ضریب تصحیح بوده و مقدار F برای انواع مختلفی از دیاگرام‌های مربوط به دست می‌آید. طراحی مبدل (محاسبه سطح مبدل) در صورت منوط به انجام حدس و خطاست، ولی با تعریف کارایی مبدل حرارتی، این طراحی آسان‌تر صورت می‌گیرد. این روش که ناسلت آن را پایه‌گذاری کرد به نام روش تعداد واحدهای انتقال (N.T.U یا Number of Transfer Unit) معروف است. در ادامه به طور خلاصه به این روش پرداخته می‌شود:

انتقال حرارت واقعی

= کارایی مبدل حرارتی =

ماکزیمم انتقال حرارت

با توجه به این‌که q = CH(THi – Tho) = CC(TCo – Tci) (توجه شود که C=m.c که c ظرفیت حرارتی است). به راحتی می‌توان دریافت که هر جریان که دارای بیشتری اختلاف دما باشد، باید کمترین C را نیز داشته باشد. یعنی:

Cc > Cmin یا CH > CC ( ∆Tc > ∆TH (1 اگر

CH > Cmin یا CC > CH ( ∆TH > ∆Tc (2 اگر

چون در تعریف کارآیی، برای ماکزیمم انتقال حرارت (مخرج تعریف) سطح مبدل را بی‌نهایت تصور می‌کنیم. پس دمای خروجی جریان سرد (در حالت CH > CC) می‌تواند به دمای ورودی جریان گرم برسد (به‌طور مشابه دمای خروجی جریان گرم در حالت CH

شکل 1-3 توزیع دما در مبدل مختلف جریان سرد بیشترین اختلاف دما را دارد.

اهمیت این رابطه در طراحی این است که فقط احتیاج به دانستن دماهای ورودی جریان گرم و سرد است، البته به شرط آن که کارایی مبدل حرارتی () معلوم باشد.

محاسبات ریاضی نشان داده است که کارآیی مبدل‌ها فقط تابعی از نسبت‌های می‌باشد که U ضریب کلی انتقال حرارت و A سطح مبدل حرارتی است، دو حالت بسیار ساده زیر موید این مطلب است:

در صورتی که در مبدل مختلف الجهت C=1 باشد، داریم:

 

در صورتی که کندانسور و یا تبخیرکننده داشته باشیم، ملاحظه شد که دمای یک جریان ثابت می‌ماند، در مورد این جریان C = 0 or Cmax ( ∞

 

در ضمن هرچه NTU بیشتر شود، کارایی مبدل بیشتر می‌شود، به شرط آن که در مورد مبدل‌های هم‌جهت مقدار NTU از سه و در مبدل‌های مختلف‌الجهت مقدار NTU از 5 بیشتر نباشد. کاهش نسبت نیز بر افزایش کارایی مبدل اثر دارد، ولی این کاهشِ نسبت نمی‌تواند تا صفر شدن دبی یکی از جریان‌ها ادامه یابد، چرا که در این صورت از مبدل تنها یک جریان عبور می‌کند که با اساس کار مبدل منافات دارد.

منـــبــــع:

معاضد، محمدتقی و دیگران، مهندسی شیمی، انتشارات ارکان، زمستان 1379



خرید و دانلود تحقیق در مورد مبدل‌های حرارتی 4 ص


تحقیق درباره آشنایی با نیروگاه حرارتی و اجزاء مختلف آن 180ص با فرمت ورد

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 182

 

فهرست مطالب

مقدمه:

با توجه به روند رو به رشد صنایع و لزوم استفاده از نیروی برق در کشورهای جهان , کسترش نیروگاهها در دستور کار اجرایی کشورهای مختلف قرار گرفته است و این امر به توسعه و گسترش نیروگاه های و پیشرفت های چشم گیری در زمینه فن آوری نیروگاهی منجر شده است .

از آنجا که مهمترین عامل تولید انرژی الکتریکی تبدیل سوخت های فسیلی و گازی به انرژی الکتریکی میباشد می باشد لذا احتراق در نیروگاه های حرارتی و به همراه آن آلودگی هوا مهمترین مسأله قابل توجه خواهد بود .

توجه خاص به فرآیند احتراق از چند دیدگاه قابل ملاحظه است:

بهینه سازی مصرف سوخت و حداکثر استفاده از انرژی سوخت و کاهش هزینه ها .

کاهش آلاینده های زیست محیطی حاصل از احتراق که به صورت محصولات احتراق از دودکش نیروگاه ها خارج می شوند.

لزوم دستیابی به دماهای بالا و پایداری احتراق با توجه به حساسیت شبکه قدرت

آشنایی با نیروگاه حرارتی و اجزاء مختلف آن :

بویــلر

بویلر در نیروگاه وظیفه تامین بخار جهت چرخش توربین را به عهده دارد و در اصل مانند یک دیگ بخارمی باشدبا این تفاوت که در داخل بویلر و در امتداد دیواره های آن لوله های متعددی قرار گرفته اند و آب پس از ورود به بویلر در قسمت بالایی آن وارد محفظه ای به نام درام شده و سپس از آنجا واز سمت پائین بویلر وارد لوله های بویلر (Water Wall )می گرددو در آنجادر اثر حرارتی که ناشی از سوختن مشعلهای داخل بویلر که در سه ردیف و در دو طرف دیواره های بویلر قرار دارند می باشد آب به بخار تبدیل شده و مجدداً وارد درام می گردد و در درام آب و بخار از یکدیگر جدا شده وآب مجدداً وارد لوله های بویلر و بخار وارد لوله های دیگری به نام سوپر هیتر می گردد که کار داغتر کردن بخار و رساندن دمای بخار به 540درجه سانتیگراد را به عهده دارند و سپس بخار داغ پس از رسیدن به دمای 540 درجه سانتیگراد وارد توربین می گردد,بویلر نیروگاه شازند به طور کلی از نوع درام دار و تحت فشار می باشد که قادر است هم با سوخت گاز طبیعی و هم با سوخت مازوت کار کندو بخار با دمای 540 درجه سانتیگراد و فشار 167Bar بویلر را ترک می کند.

درنیروگاه های برق فسیلی و نیز نیروگاه های هسته ای از مولدهای بخار استفاده می شود در مولد های بخار بسیار پیشرفته بخار فوق گرم فشار بالا (mpa5/16 تا mpa 24) تولید می شود و دراین میان مولد های بخار مورد استفاده در راکتورهای آب تحت فشار که در آنها بخار اشباع فشار پایین mpa7 تولید می گردد موردی استثنایی می باشد در همه این موارد از بخار آب بعنوان سیال کاری چرخه رانکین استفاده می شود امروز در جهان مولدهای بخار بزرگترین منبع تأمین انرژی برای نیروگاه ها بشمار می روند .

اجزاء اصلی مولد بخار عبارتند از:

1- دیگ

2- اکونومایزر

3- سوپرهیتر

4- ری هیتر

5- ژنگستروم

6- درام

و افزون به اینها مولد بخار دارای دستگاه های کمکی مختلفی مانند مشعلها ، دمنده ها ، دودکش و . . . می باشد .

مولدهای بخار از جهات گوناگون تقسیم بندی می شوند و بعنوان مثال می توان آنها را به انواع صنعتی ، نیروگاهی و از جهت دیگر بعنوان درام دار و بدون درام و . . . تقسیم بندی نمود .

در بخش زیر به شرخ تک تک اجزاء مولد های بخار (بویلر) و انواع آنها پرداخته می شود :

دیگ بخار

دیگ بخار به قسمتی از مولد بخار گفته می شود که در آن مایع اشباع به بخار اشباع تبدیل می شودو از لحاظ فیزیکی به دشواری می توان اکونومایزر را از دیگ بخار جدا نمود .

مولد های بخار را می توان به نوع نیروگاهی و صنعتی تقسیم نمود که به توضیح کلی آنها پرداخته می شود .

مولدهای بخار نیروگاهی مدرن اساساً دو نوع هستند :

1 - نوع درام دار لوله آبی زیر بحرانی

2- نوع یکبار گذر فوق بحرانی (Once Through).

واحدهای فوق العاده بحرانی معمولاً در فشار mpa24 کار می کنند که بالاتر از فشار بحرانی آب ،mpa 9/22 است . مولد بخار درام دار زیر بحرانی معمولاً در حدود mpa13 الیmpa 18کار می کند و بخار فوق گرم با دمای 540 درجه سانتیگراد تولید می کنند و دارای یک یا دو مرحله بازگرمایش بخار هستند . ظرفیت بخار دهی مولدهای بخار نیروگاهی مدرن بالاست و مقدار آن از 125 تاkg/s 1250 میتواند تغییر کند .



خرید و دانلود تحقیق درباره آشنایی با نیروگاه حرارتی و اجزاء مختلف آن 180ص با فرمت ورد


تحقیق درمورد پمپ حرارتی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 5

 

بررسی اثر پمپ حرارتی در کاهش مصرف انرژی برج های جداساز C2

مقادیر زیادی از انرژی برای پالایش اولفین های سبک، مثل اتیلن، در جداسازی محصولات پلیمری با نقطه جوش نزدیک به هم مصرف می شود. از آنجا که جداسازی اتیلن از اتان از نظر نیازهای حرارتی و فنی از مشکل ترین جداسازی هاست. جای زیادی برای بهبود اقتصادی فرایند اتیلن وجود دارد. هدف این مقاله، ارایه یک طرح صنعتی قابل اجرا برای برج های تقطیر یکپارچه حرارتی (HIDiC) برای جداسازی اتیلن از اتان با به کارگیری پمپ حرارتی است. در این مقاله، روشی برای ترکیب حرارتی برج ها به وسیله پمپ های حرارتی برقی؛ که بین مراحل میانی غنی سازی و عاری سازی برج کار می کنند ارایه می شود. برای این کار از یک سیکل پمپ حرارتی در میانه برج استفاده شده است تا هزینه کل برق مصرفی را کاهش دهد. در این بهینه سازی از مدول معادلاتی Aspen Plus بهره گرفته شده است و در تابع هدف تشکیل شده به تاثیر مفاهیم پنالتی حرارتی و تاثیر گلوگاهی افزایش جریان بخار در بهینه سازی توجه و حالت بهینه آن انتخاب شده است

در بهینه سازی سیستم های حرارتی، عموماً به یک مدل کامل از سیستم و استفاده از روشهای عددی نیاز است.در این مقاله، بهینه سازی اگزرژی- اقتصادی سیکل سرمایش تراکمی تبخیری مورد استفاده در سرمایش ساختمان بر پایه نظریه هزینه اگزرژی (Exergetic cost) بکار رفته است. برمبنای این نظریه، هزینه تمام جریانهای داخلی و محصولات سیستم محاسبه می گردند و یک تابع هدف که مجموعه هزین ههای سرمایه گذاری اولیه برای تجهیزات، هزینه های کارکرد، هزینه های تعمیر و نگهداری و انهدام اگزرژی می باشد، معرفی شده است. سپس پارامترهای طراحی سیکل سرمایش در حالت حداقل هزین هها، محاسبه و ارائه شد هاند. این پارامترها شامل بازده موتور الکتریکی، بازده کمپرسور، بازده حرارتی کندانسور و اواپراتور می باشند.

چگونگی انتقال حرارت و ضریب عملکرد در اینگونه از سیست مها به روشهای تحلیلی و تجربی محاسبه شده است . سیال عامل در پمپ حرارتی ، به محض تبخیرشدن، حرارت را از منبع حرارتی گرفته و با میعان خود، آن را به جریان آب موجود در سیستم گرمایش منطقه ای تحویل م یدهد. در این بررسی ضمن مرور ادبیات، در مسیر بازخوانی و تکمیل مطالعات قبلی اگزرژی که در اغلب موارد، ریشه در احصاء برگشت ناپذیر یها دارد؛ یک برنامة رایانه ای به منظور محاسبات اگزرژتیکی تهیه گردیده است. این بررس ی، تمام پارامترهای مهم در طراحی را مورد توجه قرار داده است . نتایج این تحلیل علاوه بر مقایسه با استانداردJIS و تأیید صحت آنها، با یافت ههای تجربی نیز مقایسه شده و تطابق مطلوبی در روند ضرورت بکارگیری پم پهای حرارتی در سیست مها بدست آمده است.

پمپ های حرارتی، یکی از انواع سیستم های تهویه مطبوع برای تأمین گرمایش و سرمایش ساختما ن ها می باشند . پمپ حرارتی در زمستان، گرما را از محیط خارج گرفته و به داخل ساختمان انتقال می دهد و در تابستان، گرمای درون ساختمان را به محیط خارج منتقل می نماید . پمپهای حرارتی بر اساس منبعی که از آن جهت تبادل گرما و سرما استفاده می کنند، به دو دسته اصلی پمپ حرارتی هوایی و زمینی تقسیم می گردند. در این مقاله سیستم پمپ حرارتی هوایی معرفی شده و خواص، کارکرد، مزایا و نکات لازم جهت استفاده از این سیستمها ارائه می گردد

پمپهای حرارتی در تولید گرمایش و سرمایش ، ساختمانهای مسکونی، تجاری ، اداری و صنعتی مورد توجه قرار گرفته اند. نیروی محرکه لازم جهت به حرکت در آوردن کمپرسور می تواند ، توسط موتور الکتریکی و یا یک موتور احتراق داخلی تأمین شود . پمپ حرارتی گاز سوز ، دستگاهی است که انرژی لازم برای سرمایش و گرمایش را از حرکت کمپرسور توسط یک موتور احتراق داخلی گازسوز ، فراهم می گرداند. با توجه به هزینه های متفاوت انرژی الکتریکی و سوخت گاز طبیعی، می توان هزینه های جاری کارکرد هر یک از این دستگاهها را در مناطق مختلف ، تعیین نمود . نظر به فراوانی گاز طبیعی و قیمت کم این سوخت در ایران، استفاده از پمپ های حرارتی گاز سوز می تواند بسیار سودمند باشد . در این مقاله ، پس از تشریح مشخصه های سیستمهای پمپ حرارتی گاز سوز ، هزینه های مصرف انرژی پمپ های حرارتی گاز سوز و الکتریکی برای دو گروه از محصولات شرکتهای تولید کننده این وسیله، مقایسه شده است

قانون دوم ترمودینامیک متضمن این مفهوم است  که یک فرایند فقط در یک جهت معین پیش می رود و در جهت خلاف آن قابل وقوع نیست. این محدودیت برای جهت وقوع یک فرایند, مختصه قانون دوم است.اگرسیکلی متناقض با قانون اول ترمودینامیک نباشد, دلیلی براین نیست که آن سیکل حتماً اتفاق می افتد. همین امر منجر به تنظیم قانون دوم ترمودینامیک شده است. دو بیان کلاسیک از قانون دوم ترمودینامیک وجود دارد که هر دو بیانگر یک مفهوم اساسی هستند: بیان کلوین- پلانک و بیان کلازیوس ,  بیان کلوین- پلانک بر پایه توضیح عملکرد موتورهای حرارتی است وبیان می دارد که غیرممکن است وسیله ای بسازیم که در یک سیکل عمل کند و در عین حال که با یک مخزن تبادل حرارت دارد اثری بجز صعود وزنه داشته باشد. این بیان از قانون دوم ترمودینامیک در بر گیرنده این مضمون است که غیر ممکن است که یک موتور حرارتی مقدار مشخصی حرارت را از جسم درجه حرارت بالا دریافت کند و همان مقدار نیز کار انجام دهد. بیان کلازیوس نیز یک بیان منفی است و اعلام می دارد که غیر ممکن است وسیله ای بسازیم که در یک سیکل عمل کند و تنها اثر آن انتقال حرارت از جسم سردتر به جسم گرمتر باشد. این بیان بر پایه توضیح عملکرد پمپهای حرارتی می باشد و دربرگیرنده این مفهوم است که  نمی توان یخچالی ساخت که بدون کار ورودی عمل کند. هر دو بیان کلاسیک از قانون دوم ترمودینامیک نوعاً بیانهای منفی هستند و اثبات بیان منفی ناممکن است. درباره قانون دوم ترمودینامیک گفته میشود  "هر آزمایش مربوطی که صورت گرفته به طور مستقیم یا غیرمستقیم ﻤﺆید قانون دوم بوده و هیچ آزمایشی منجر به نقض قانون دوم نشده است. همانگونه که ذکر شد تنها گواه ما بر صحت قانون دوم ترمودینامیک آزمایشات گوناگونی است که همگی درستی این قانون را ﺘﺄیید می کنند. با این همه در ترمودینامیک کلاسیک سعی می کنند نشان دهند که اثبات معادل بودن دو بیان کلوین- پلانک و کلازیوس دلیلی بر صحت قانون دوم ترمودینامیک است. در حالیکه این امر درستی قانون دوم را اثبات نمی کند. در اثبات اینکه دو بیان فوق الذکر معادل یکدیگرند از یک مدل منطقی بهره جسته می شود که می گوید: " دو بیان,  معادل هستند اگر صحت هر بیان منجر به صحت بیان دیگر گردد  و اگر نقض هر بیان باعث نقض بیان دیگر شود."  

 

 

   

 

 

 

 

در ترمودینامیک کلاسیک ,معادل بودن دو بیان کلوین- پلانک و کلازیوس  با این آزمایش ذهنی استنتاج می شود. در شکل نشان داده می شود که نقض بیان کلازیوس منجر به نقض بیان کلوین- پلانک می شود. وسیله سمت چپ ناقض بیان کلازیوس است. زیرا که یک پمپ حرارتی است که نیازی به کار ندارد. وسیله سمت راست یک موتور حرارتی است.  در اینجا به دلیل اینکه انتقال حرارت خالص با منبع درجه حرارت پایین وجود ندارد پس پمپ حرارتی و موتور حرارتی و منبع درجه حرارت بالا مشتمل بر یک سیکل ترمودینامیکی است اما فقط با یک مخزن تبادل حرارت دارد  بنابراین نتیجه می شود که  ناقض  بیان کلوین- پلانک می باشد. و گفته می شود تساوی کامل این دو بیان هنگامی اثبات می شود که نقض بیان کلوین- پلانک نیز موجب نقض بیان کلازیوس بشود. با این وصف باید بپذیریم که دو بیان فوق, منتج از یکدیگر هستند. " در اثبات معادل بودن چند گزاره اگر عبارتی بصورت B ↔A   بیان شده باشد آنگاه B  نتیجه A است و A هم نتیجه B , بعبارت دیگر  AوB معادل یکدیگر هستند, بالعکس اگر A وB  معادل یکدیگر باشند,  هریک از آنها نتیجه دیگری است.

 

 

 

 

 

 



خرید و دانلود تحقیق درمورد پمپ حرارتی