لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 21
قطارهای تیلتینگ
چکیده
تکنولوژی قطارهای تیلتینگ، اپراتورهای راهآهنهای کشورهای مختلفی از قبیل ژاپن، آلمان، ایتالیا، سوئد و غیره را به خود جذب کرده است. با موفقیتی که در اثر این تکنولوژی در این کشورها به دست آمده، قرار است که به عنوان انتخابی مناسب برای سیستمهای به ثبت رسیدة حمل و نقل سرعت بالای ریلی همچون در سیستم ICE در آلمان و TGV در فرانسه ارائه گردد. نویسندگان این مقاله مسئله قطارهای تیلتینگ را به طور کلی شرح دادهاند و بعضی از مسائلی را که میبایست اپراتورهایی که میخواهند یک روش را برای به حرکت در آوردن جابجایی خدمات قطارهای سرعت بالا انتخاب کنند، مشخص کردهاند.
مقدمه
متداولاً برای پاسخ دادن به مسئله افزایش نیاز به کوتاه شدن زمان سفر، راهآهنها به زحمت سرمایه گذاریةایی بر روی بهینه سازی تراز بندی خط، علائم و همچنین ارائه سیستمهای کششی که قدرت بیشتری برای قطارهای سرعت بالا داشته باشند و همچنین ارائه ذخایر سوختی قویتر کردهاند و معمولاً چند عامل از این عوامل به صورت ترکیبی ارائه شده است.
برای مثالد ر فرانسه نیاز به زمان کوتاهتر در سفرها و همچنین شلوغی خط اصلی پاریس ـ دیجون ـ لیون باعث شد تا اولین مسیر (Ligne a Grande Vitesse) LGVکه مسیری است برای جابجایی تنها قطارهای سرعت بالای مسافری (Trains a Grande Vitesse) TGV طراحی شده و با سرعتی تا Km/h 270 حرکت میکنند. این پروژه خاص با موفقیت روبرو شد و آن هم به خاطر شرایط خاص آن بوده چرا که هزینه بسیار بالای چنین راه آهن جدید و سرعت بالایی از عهده یک کشور ثروتمند هم تقریباً خارج است.
روش دیگر برای یک خط مسافری سرعت بالا استفاده از قطارهای Maglev میباشد. که روشی است که در چندین کشور گسترده شده، خصوصاً در ژاپن و آلمان، اگر چه میتوان با استفاده از این سیستم به سرعت بالا و زمان کوتاهتری در سفر و همچنین مصرف نیروی نسبتاً کمتری رسید ولی به علت هزینه بالای اولیه و فقدان راحتی این سیستم نمیتوان از روش Maglev در سراسر دنیا استفاده کرد.
علاوه بر هزینه چشمگیر اولیه یک خط سرعت بالا، فقدان بازگشت سرمایه باعث شده است تا مشکلاتی در جذب سرمایه بخش خصوصی ایجاد شود و در بعضی موارد دیگر جدا کردن قطارها از لحاظ عملیاتی و زیرسازی خود مشکلاتی به حساب میآیند که در ساخت یک خط سرعت بالا دخیل هستند. این مشکلات اساسی، مسئولین راهآهن چندین کشور را متقاعد کرد تا بر روی قطارهای تیلتینگ سرمایه گذاری کنند تا بتوانند به آمالشان در زمینه کوتاه کردن زمان سفرها بدون اینکه مجبور باشند تمام مشکلات مالی و ساختمانی را حل کنند، برسند.
تاریخچه توسعه
کار بر روی قطارهای تیلتینگ در آلمان در دهه 1930 و در فرانسه در دهه 1950 آغاز شد. تحقیقات کلی بر روی این تکنولوژی تنها در اوایل دهه 1970 در کشورهای متفاوتی آغاز شد. خصوصاً در ایتالیا با Pendolino، در بریتانیا با قطار پیشرفته مسافری APT، در ژاپن با مجموعه قطارهای 381 و در کانادا با LRC.
در بریتانیا به حرکت در آوردن قطارهای تیلتینگ که به منظور کاهش زمان سفر بود بعد از بررسی امکانات مختلف انجام گرفت.
قطار APT-E به همراه E برای آزمایشاتی میباشد و توسط مرکز تحقیقات ریلی بریتانیا در دهه 1970 ساخته شد تا تکنولوژی کج شدن را آزمایش کنند و بعد از آن قطار APT-P به همراه P به عنوان نمونه قرار گرفت که در سال 1981 برای خدمات مسافری عرضه گردید. با وجود این با فقدان قابلیت اطمینان این قطار، سریعاً از سرویس خارج شد.
در ایتالیا یک نمونه از سیستم Pendolino در سال 1971 و بعد از آن در سال 1976 عرضه شد و این نمونه به عنوان قطار مسافری ETR-401 ارائه شد. بعد از این که کار و تحقیق بر روی قطارهای تیلتینگ در بریتانیا متوقف شد، این تکنولوژی به ایتالیا فروخته شد که بعد از اصلاحات بیشتری به همراه تکنولوژی تیلتینگ در ایتالیا منجر به ظهور قطار ETR-450 در سال 1981 گردید. نمونههای بیشتری از این سیستم در سالهای 1993 و بعد از آن همچون مجموعههای ETR-460-470-480 ارائه گردید.
تاریخچه عملیات کج شدن در کشورهای دیگر شبیه توسعه و ساخت در ایتالیا بوده است. در سالهای اخیر تکنولوژی کج شدن شهرت بیشتری پیدا کرده و باعث شد که بسیاری از اپراتورهای راهآهنی در اروپا، ژاپن و آمریکا به سوی آن جذب شوند.
اصل فیزیکی کج شدن
وقتی یک شیء با جرم m روی یک مسیر منحنی با سرعت V و شتاب مغناطیسی V2/R حرکت میکند،شتاب جانبی یا گریز از مرکز از طریق این شیء امتحان میشود که این شیء نسبتاً در خارج عمل می:ند اما به همراه شعاع انحناء، رفتار خمیدگی را حفظ میکند. همانطور که در Error، جایی که R شعاع مسیر خمیدگی میباشد، نشان داده شده است.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 4
آهن ربا
به اشیایی که میدان مغناطیسی تولید کنند، آهنرُبا گفته میشود. آهنربا جهت جداسازی ضایعات آهنی در صنایع مختلف کاربرد دارد و در انواع مختلف دستی، الکتریکی، دائم و ... وجود دارد. نوعی از آهنرباها در دزدگیر لباس کاربرد دارد و برای جدا کردن تگهای لباسها استفاده میشود.
معنای لغوی
/
اثر خاصیت مغناطیسی
آهنربا از دو بخش آهن و -ربا از فعل ربودن تشکیل شده. کاربرد واژههایی مانند آهنربا و کهربا در فارسی پیشینه طولانی دارد.
برابر اروپایی آن: اولین شرح مغناطش به یونانیان قدیم باز میگردد که این اسم را به مغناطیس دادند. این اسم از مگنزیا که نام یک دهکدهٔ یونانی است، مشتق شدهاست. از لحاظ لغوی Magnet به معنی «سنگی از اکسید منیزیم» است. این سنگ حاوی مگنتیت (Fe۲O۳) بود و هنگام مالش آن به آهن، آن را آهنربا میکرد. نظریهٔ دیگر این است که این واژه از ریشهٔ واژهٔ فارسی «مگ» میباشد و این واژه magnet به همراه واژهٔ magic از ریشهٔ واژهٔ پارسی mag میباشند، که خود برگرفته از مغان ایران است.
تاریخچه
تلاش جدی برای استفاده از قدرت پنهان مواد مغناطیسی بسیار پس از کشف آن انجام شد. به عنوان مثال در قرن ۱۸ام با ادغام تکههای کوچک مواد مغناطیسی تکهٔ بزرگتری بدست آمد که مشخص شد توانایی بلند کردن قابل توجهی دارد.
پس از اینکه اورستد در سال ۱۸۲۰ کشف کرد که جریان الکتریکی میتواند میدان مغناطیسی به وجود آورد، پیشرفتهای زیادی در این زمینه حاصل شد.
استورگن دانش خودش را با موفقیت برای ساخت اولین آهنربای الکتریکی در سال ۱۸۲۵ بکار برد. با اینکه دانشمندان زیادی (از قبیل گاوس، ماکسول و فارادی) با این پدیده از دیدگاه تئوریک درگیر شدند، اما توصیف درست مواد مغناطیسی به فیزیکدانان قرن بیستم نسبت داده میشود.
/
چینش فریمغناطیس
/
کیوری و ویس در شفافسازی پدیدهٔ مغناطش دائمی و وابستگی دمایی آن موفق بودند. ویس فرضیهٔ وجود حوزههای مغناطیسی را مطرح کرد تا توضیح دهد که مواد چگونه میتوانند آهنربا شده یا خاصیت مغناطیسی کل آنها صفر شود.
/
جداساز دستی مغناطیسی مواد معدنی سنگین
جزئیات خواص دیوارههای این حوزههای مغناطیسی توسط بلوچ، لاندو و نیل بررسی شد.
کاربرد
/
آهنرباها کاربردهای زیادی در اسباب بازیها دارند. میلههای مغناطیسی M شکل، برای ساخت شکلهای گوناگون به گویهای فلزی متصل شدهاند
مواد مغناطیسی جزء جدانشدنی فناوری مدرن هستند. آهنرباها یکی از اجزای مهم بسیاری از وسایل الکترونیکی و الکترومکانیکی هستند. کاربرد عمدهٔ آهنرباهای دائم در تبدیل انرژی مکانیکی به انرژی الکتریکی و بالعکس است (مانند موتورهای الکتریکی و ژنراتورها) . مغناطیسها همچنین در حافظههای مغناطیسی (صفحات هارد دیسک و فلاپیدیسکها و کارتهای پلاستیکی حافظه) کاربرد دارند.
همچنین آهنرباها در صنایع مختلف جهت جداسازی ضایعات آهن کاربرد فراوان دارند.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 5
اطلاعات اولیه
آهن ، عنصر شیمیایی است که در جدول تناوبی با نشان Fe و عدد اتمی 26 وجود دارد. آهن فلزی است که در گروه 8 و دوره 4 جدول تناوبی قرار دارد.
تاریخچـــــه
اولین نشانههای استفاده از آهن به زمان سومریان و مصریان بر میگردد که تقریبا" 4000 سال قبل از میلاد با آهن کشف شده از شهاب سنگها اقلام کوچکی مثل سر نیزه و زیور آلات میساختند. از 2000 تا 3000 سال قبل از میلاد ، تعداد فزاینده ای از اشیاء ساخته شده با آهن مذاب ( فقدان نیکل ، این محصولات را از آهن شهاب سنگی متمایز میکند ) در بینالنهرین ، آسیای صغیر و مصر به چشم میخورد؛ اما ظاهرا" تنها در تشریفات از آهن استفاده میشد و آهن فلزی گرانبها حتی باارزشتر از طلا بهحساب میآمد.بر اساس تعدادی از منابع آهن ، بعنوان یک محصول جانبی از تصفیه مس تولید میشد - مثل آهن اسفنجی – و بوسیله متالوژی آن زمان قابل تولید مجدد نبوده است. از 1600 تا 1200 قبل از میلاد در خاورمیانه بطور روز افزون از آین فلز استفاده میشد، اما جایگزین کابرد برنز در آن زمان نشد.
تبر آهنی متعلق به عصر آهن سوئد در گاتلند سوئد یافت شده است. از قرن 10 تا 12 در خاورمیانه یک جابجایی سریع در تبدیل ابزار و سلاحهای برنزی به آهنی صورت گرفت. عامل مهم در این جابجائی ، آغاز ناگهانی تکنولوژیهای پیشرفته کار با آهن نبود، بلکه عامل اصلی ، مختل شدن تامین قلع بود. این دوره جابجایی که در زمانهای مختلف و در نقاط مختلفی از جهان رخ داد، دوره ای از تمدن به نام عصر آهن را بوجود آورد.همزمان با جایگزینی آهن به جای برنز ، فرآیند کربوریزاسیون کشف شد که بوسیله آن به آهن موجود در آن زمان ، کربن اضافه میکردند. آهن را بصورت اسفنجی که مخلوطی از آهن و سرباره به همراه مقداری کربن یا کاربید است، بازیافت کردند. سپس سرباره آنرا با چکشکاری جدا نموده وم حتوی کربن را اکسیده میکردند تا بدین طریق آهن نرم تولید کنند.مردم خاور میانه دریافتند که با حرارت دادن طولانی مدت آهن نرم در لایه ای از ذغال و آب دادن آن در آب یا روغن میتوان محصولی بسیار محکمتر بدست آورد. محصول حاصله که دارای سطح فولادی است، از برنزی که قبلا" کاربرد داشت محکمتر و مقاومتر بود. در چین نیز اولین بار از آهن شهاب سنگی استفاده شد و اولین شواهد باستان شناسی برای اقلام ساخته شده با آهن نرم در شمال شرقی نزدیک Xinjiang مربوط به قرن 8 قبل از میلاد بدست آمده است. این وسایل از آهن نرم و با همان روش خاورمیانه و اروپا ساخته شده بودند و گمان میرفت که برای مردم غیر چینی هم ارسال میکردند.در سالهای آخر پادشاهی سلسله ژو ( حدود 550 قبل از میلاد) به سبب پیشرفت زیاد تکنولوژی کوره ، قابلیت تولید آهن جدیدی بوجود آمد. ساخت کورههای بلندی که توانایی حرارتهای بالای k 1300 را داشت، موجب تولید آهن خام یا چدن توسط چینِیها شد. اگر سنگ معدن آهن را با کربن k 1470-1420 حرارت دهیم، مایع مذابی بدست میآید که آلیاژی با 5/96% آهن و 5/53% کربن است. این محصول محکم را میتوان به شکلهای ریز و ظریفی در آورد. اما برای استفاده ، بسیار شکننده میباشند، مگر آنکه بیشتر کربن آنرا از بین ببرند.از زمان سلسله ژو به بعد اکثر تولیدات آهن در چین به شکل چدن است. با این همه آهن بعنوان یک محصول عادی که برای صدها سال مورد استفاده کشاورزان قرار گرفته است، باقی ماند و تا زمان سلسله شین ( حدود 221 قبل از میلاد ) عظمت چین را واقعا" تحت تاثیر قرار نداد.توسعه چدن در اروپا عقب افتاد، چون کورههای ذوب در اروپا فقط توانایی k 1000 را داشت. در بخش زیادی از قرون وسطی در اروپای غربی آهن را همچنان با روش تبدیل آهن اسفنجی به آهن نرم بدست میآوردند. تعدادی از قالبگیریهای آهن در اروپا بین سالهای 1150 و 1350 بعد از میلاد در دو منطقه در سوئد به نامهای Lapphyttan و Vinarhyttan انجام شد.دانشمندان میپندارند شاید این روش بعد از این دو مکان تا مغولستان آن سوی روسیه ادامه یافته باشد، اما دلیل محکمی برای اثبات این فرضیه وجود ندارد. تا اواخر قرن نوزدهم در هر رویدادی یک بازار برای کالاهای چدنی بوجود آمد، مانند درخواست برای گلولههای توپ چدنی.در آغاز برای ذوب آهن از زغال چوب هم بعنوان منبع حرارتی و هم عامل کاهنده استفاده میشد. در قرن 18 در انگلستان تامین کنندگان چوب کم شدند و از زغال سنگ که یک سوخت فسیلی است، بعنوان منبع جانشین استفاده شد. این نوآوری بوسیلـــه Abraham Darby انرژی لازم برای انقلاب صنعتی را تامین نمود.
پیدایـــــــش
آهن یکی از رایجترین عناصر زمین است که تقریبا" 5% پوسته زمین را تشکیل میدهد. آهن از سنگ معدن هماتیت که عمدتا" Fe2O3 میباشد، استخراج میگردد. این فلز را بوسیله روش کاهش با کربن که عنصری واکنشپذیرتر است جدا میکنند. این عمل در کوره بلند در دمای تقریبا" 2000 درجه سانتیگراد انجام میپذیرد.در سال 2000 ، تقریبا" 1100 میلیون تن سنگ معدن آهن با رشد ارزش تجاری تقریبا" 25 میلیارد دلار آمریکا استخراج شد. درحالیکه استخراج سنگ معدن آهن در 48 کشور صورت میگیرد، چین ، برزیل ، استرالیا ، روسیه و هند با تولید 70% سنگ آهن جهان پنج کشور بزرگ تولید کنندگان آن بهحساب میآیند. برای تولید تقریبا" 572 میلیون تن آهن خام 1100 میلیون تن سنگ آهن مورد نیاز است.
خصوصیات قابل توجه
جرم یک اتم معمولی آهن 56 برابر جرم یک اتم معمولی هیدروژن میباشد. عقیده بر این است که آهن ، دهمین عنصر فراوان در جهان است. Fe مخفف واژه لاتین ferrum برای آهن میباشد. این فلز ، از سنگ معدن آهن استخراج میشود و بهندرت به حالت آزاد (عنصری) یافت میگردد.برای تهیه آهن عنصری ، باید ناخالصیهای آن با روش کاهش شیمیایی از بین برود. آهن برای تولید فولاد بکار میرود که عنصر نیست، بلکه یک آلیاژ و مخلوطی است از فلزات متفاوت ( و تعدادی غیر فلز بخصوص کربن ). هسته اتمهای آهن دارای بیشترین نیروی همگیر در هر نوکلئون هستند بنابراین آهن با روش همجوشی ، سنگینترین و با روش شکافت اتمی ، سبکترین عنصری است که بصورت گرمازایی تولید میشود.وقتی یک ستاره که دارای جرم کافی میباشد چنین کاری انجام دهد، دیگر قادر به تولید انرژی در هستهاش نبوده و یک ابر اختر پدید میآید. آهن رایجترین فلز در جهان به حساب میآید. الگوهای جهان شناختی با یک جهان باز پیشبینی زمانی را میکند که در نتیجه واکنشهای همجوشی و شکافت هسته ، همه چیز به آهن تبدیل خواهد شد!
کاربردهــــــــــا
کاربرد آهن از تمامی فلزات بیشتر است و 95 درصد فلزات تولید شده در سراسر جهان را تشکیل میدهد. قیمت ارزان و مقاومت بالای ترکیب آن استفاده از آنرا بخصوص در اتومبیلها ، بدنه کشتیهای بزرگ و ساختمانها اجتناب ناپذیر میکند. فولاد معروفترین آلیاژ آهن است و تعدادی از گونههای آهن به شرح زیر میباشد:
آهن خام که دارای 5%-4% کربن و مقادیر متفاوتی ناخالصی از قبیل گوگرد ، سیلیکون و فسفر است و اهمیت آن فقط به این علت است که در مرحله میانی مسیر سنگ آهن تا چدن و فولاد قرار دارد.
چدن ، شامل 5/3%-2% کربن و مقدار کمی منگنز میباشد. ناخالصیهای موجود در آهن خام مثل گوگرد و فسفر که خصوصیات آنرا تحت تاثیر منفی قرار میدهد، در چدن تا حد قابل قبولی کاهش مییابند. نقطه ذوب چدن بین k 1470-1420 میباشد که از هر دو ترکیب اصلی آن کمتر است و آنرا به اولین محصول ذوب شده پس از گرم شدن همزمان کربن و آهن تبدیل میکند. چدن بسیار محکم ، سخت و شکننده میباشد. چدن مورد استفاده حتی چدن گرمای سفید موجب شکستن اجسام میشود.
فولاد کربن شامل 5/1% - 5/0% کربن و مقادیر کم منگنز ، گوگرد ، فسفر و سیلیکون است.
آهن ورزیده ( آهن نرم) دارای کمتر از 5/0% کربن میباشد و محصولی محکم و چکشخوار است، اما به اندازه آهن خام گدازپذیر نیست. حاوی مقادیر بسیار کمی کربن است ( چند دهم درصد). اگر یک لبه آن تیز شود، بهسرعت تیزی خود را از دست میدهد.
فولادهای آلیاژ حاوی مقادیر متفاوتی کربن بعلاوه فلزات دیگر مانند کروم ، وانادیم ، مولیبدن ، نیکل ، تنگستن و ... میباشد.
اکسیدهای آهن برای ساخت ذخیره مغناطیسی در کامپیوتر مورد استفاده قرار میگیرند. آنها اغلب با ترکیبات دیگری مخلوط شده و خصوصیات مغناطیسی خود را بصورت محلول هم حفظ میکنند.
ترکیبات
معمولترین حالات اکسیداسیون آهن عبارتند از:
حالت فروس 2+Fe
حالت فریک 3+Fe
حالت فریل 4+Fe که با تعدادی آنزیم ( مثلا" پیروکسیدازها ) پایدار شده است.
آهن ( VI) هم معروف است (اگرچه کمیاب میباشد). درصورتیکه به شکل فرات پتاسیم باشد، ( K2FeO ) یک اکسید کننده انتخابی برای الکلهای نوع اول میباشد. این ماده جامد فقط در شرائط خلاء و ارغوانی تیره پایدار است، هم به صورت محلول سوزآور و هم بصورت یک ماده جامد.
کاربید آهن Fe3C به نام سمنتیت معروف است.
بیولـــــــوژی
آهن ، اتم اصلی مولکول هِم ( بخشی از گلبول قرمز) و بنابراین جزء ضروری تمامی هموپروتئینها محسوب میشود. به همین علت ، وجود این عنصر در حیوانات حیاتی میباشد. همچنین آهن غیر آلی در زنجیرههای آهن – گوگرد بسیاری از آنزیمها یافت میشود. باکتریها اغلب از آهن استفاده میکنند. وقتی بدن در حال مبارزه با یک عفونت باکتریایی است، برای عدم دستیابی باکتری به آهن ، این عنصر را پنهان میکند.
لینک دانلود و خرید پایین توضیحات
دسته بندی : پاورپوینت
نوع فایل : .ppt ( قابل ویرایش و آماده پرینت )
تعداد اسلاید : 25 اسلاید
قسمتی از متن .ppt :
تولید آهن
روشهای تولید آهن و فولاد
عامل احیا کننده: کک تهیه شده از زغال سنگ کک شو
(کک در کوره بلند می سوزد و ایجاد حرارت و گاز احیا کننده می کند)
محصول : چدن (آهن خام مذاب)
فولاد سازی: با دمش اکسیژن و عموما اکسیداسیون ناخالصیها در کنورتور
ویژگیها:
1- هزینه سر مایه گذاری بالا (واحدهای بزرگ با 3 میلیون تن ظرفیت در سال)
2- وابستگی به زغالسنگ کک شو
3- آلودگی محیط زیست (عمدتا ناشی از واحد های کک سازی)
1-روش کوره بلند- کنورتور
Coke Oven-Blast Furnace- Basic Oxygen Furnace
روشهای تولید آهن و فولاد
احیا در دمایی کمتر از دمای ذوب و تولید آهن اسفنجی
فولاد سازی: در کوره قوس الکتریکی
ویژگیها:
1- احیا در حالت جامد و دمای کمتر
2- امکان ساخت واحد های کوچک(400 هزارتن یا یک میلیون تن) یا تعدادی مدول احیا به صورت موازی
3- عدم وابستگی به زغاسنگ کک شو (امکان استفاده از گاز طبیعی و زغالسنگ معمولی)
4- امکان استفاده از DRI به جای قراضه و اجتناب از مشکلات تهیه و مصرف قراضه
2- احیا مستقیم – کوره قوس الکتریکی
Direct Reduction- Electrical Arc Furnace
لینک دانلود و خرید پایین توضیحات
دسته بندی : پاورپوینت
نوع فایل : .ppt ( قابل ویرایش و آماده پرینت )
تعداد اسلاید : 25 اسلاید
قسمتی از متن .ppt :
تولید آهن
روشهای تولید آهن و فولاد
عامل احیا کننده: کک تهیه شده از زغال سنگ کک شو
(کک در کوره بلند می سوزد و ایجاد حرارت و گاز احیا کننده می کند)
محصول : چدن (آهن خام مذاب)
فولاد سازی: با دمش اکسیژن و عموما اکسیداسیون ناخالصیها در کنورتور
ویژگیها:
1- هزینه سر مایه گذاری بالا (واحدهای بزرگ با 3 میلیون تن ظرفیت در سال)
2- وابستگی به زغالسنگ کک شو
3- آلودگی محیط زیست (عمدتا ناشی از واحد های کک سازی)
1-روش کوره بلند- کنورتور
Coke Oven-Blast Furnace- Basic Oxygen Furnace
روشهای تولید آهن و فولاد
احیا در دمایی کمتر از دمای ذوب و تولید آهن اسفنجی
فولاد سازی: در کوره قوس الکتریکی
ویژگیها:
1- احیا در حالت جامد و دمای کمتر
2- امکان ساخت واحد های کوچک(400 هزارتن یا یک میلیون تن) یا تعدادی مدول احیا به صورت موازی
3- عدم وابستگی به زغاسنگ کک شو (امکان استفاده از گاز طبیعی و زغالسنگ معمولی)
4- امکان استفاده از DRI به جای قراضه و اجتناب از مشکلات تهیه و مصرف قراضه
2- احیا مستقیم – کوره قوس الکتریکی
Direct Reduction- Electrical Arc Furnace