لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 5 صفحه
قسمتی از متن .doc :
شیمی آنتروپی
شیمی کوانتومی ، دانش کاربرد مکانیک کوانتومی در مسایل مربوط به شیمی است. اثر شیمی کوانتومی ، در شاخههای وابسته به شیمی قابل لمس است. مثلا :
علمای شیمی فیزیک ، مکانیک کوانتومی را (به کمک مکانیک آماری) در محاسبات مربوط به خواص ترمودینامیکی (مانند آنتروپی و ظرفیت حرارتی) گازها ، در تفسیر طیفهای مولکولی به منظور تائید تجربه خواص مولکولی (مانند طولها و زوایای پیوندی) ، در محاسبات نظری خواص مولکولی ، برای محاسبه خواص حالات گذار واکنشهای شیمیایی به منظور برآورد ثابتهای سرعت واکنش ، برای فهم نیروهای بین مولکولی و بالاخره برای بررسی ماهیت پیوند در جامدات بکار میبرند.
علمای شیمی آلی از مکانیک کوانتومی ، برای برآورد پایداریهای نسبی مولکولها ، محاسبه خواص واسطههای واکنش ، بررسی ساز و کار واکنشهای شیمیایی ، پیش بینی میزان ترکیبات و تحلیل طیفهای NMR استفاده میکنند.
علمای شیمی تجزیه از مکانیک کوانتومی برای تفسیر شدت و فرکانسهای خطوط طیفی استفاده میکنند.
علمای شیمی معدنی از نظریه میدان لیگاند که یک روش تقریبی مکانیک کوانتومی است، در توضیح خواص یونهای مرکب فلزات واسطه سود میبرند.
روش های تشخیص واکنش های خود به خودی
عوامل خودبه خود بودن واکنش های شیمیای: 1-کاهش آنتالپی 2-افزایش آنتروپی
کاهش آنتالپی: انرژی درونی با پایداری رابطه ی عکس دارد پس تمام سیستم ها تمایل دارند با کاهش آنتالپی (انرژی درونی)خود به پایداری بیشتری برسند.
افزایش آنتروپی:
به طور کلی هرچه میزان تحرک ذرات تشکیل دهنده ی سیستم بیشترباشد نظم سیستم کمتراست.آنتروپی نشان دهنده ی میزان بی نظمی یک سیستم است
نکته1: افزایش دما سبب افزایش آنتروپی می شود.
نکته 2:آنتروپی در صفر مطلق برابر صفر می باشد.
تشخیص خودبه خودی بودن واکنش های شیمیایی:
1 - آنتروپی افزایش آنتالپی کاهش درهردمایی خودبه خودی
2- آنتروپی کاهش آنتالپی افزایش غیرخود به خود
3- آنتروپی افزایش آنتالپی افزایش در دماهای بالاخود به خودی و واکنش برگشت پذیر
4- آنتروپی کاهش آنتالپی کاهش در دماهای پایین خود به خودی و واکنش برگشت پذیر1
قانون دوم ترمودینامیک و آنتروپی
قانون اول ترمودینامیک به معرفی انرژی درونی ، U ، منجر شد. این کمیت تابع حالتی است که بر مبنای آن ، مجاز بودن یک فرآیند مورد قضاوت قرار میگیرد و بیان میدارد که فقط تحولاتی مجاز است که انرژی داخلی کل سیستم منزوی ، ثابت بماند. قانونی که ملاک خودبخودی بودن را مشخص میسازد (قانون دوم ترمودینامیک) ، برحسب تابع حالت دیگری بیان میشود. این تابع حالت ، آنتروپی ، S ، است.
ملاحظه خواهیم کرد که بر مبنای آنتروپی قضاوت میکنیم که آیا یک حالت بطور خودبخودی از حالت دیگری قابل حصول میباشد. در قانون اول با استفاده از انرژی داخلی ، تحولات مجاز مشخص میشود (آنهایی که انرژی ثابت دارند). از قانون دوم با استفاده از آنتروپی ، تحولات خودبخودی از بین همان فرآیندهایی مشخص میشود که بر مبنای قانون اول مجاز میباشد.
بیان قانون دوم
آنتروپی سیستم منزوی در یک فرآیند خودبخودی افزایش مییابد:
که ، آنتروپی تمام قسمتهای سیستم منزوی میباشد.
از آنجایی که فرآیندهای برگشت ناپذیر (مانند سرد شدن شیئی تا دمای محیط و انبساط آزاد گازها) خودبخودی است، در نتیجه همه آنها با افزایش آنتروپی توام میباشند. این نکته را میتوان به این صورت مطرح کرد که در فرایندهای برگشت ناپذیر آنتروپی تولید میشود. از طرف دیگر ، در فرایند برگشت پذیر توازن وجود دارد، یعنی سیستم با محیط در هر مرحله در تعادل است. هر مرحله بسیار کوچک در این مسیر برگشت پذیر بوده و پخش نامنظم انرژی روی نمیدهد و در نتیجه آنتروپی افزایش نمییابد، یعنی در فرآیند برگشت پذیر آنتروپی ایجاد نمیشود. آنتروپی در فرآیندهای برگشت پذیر از بخشی از سیستم منزوی به بخش دیگری منتقل میگردد.
تعریف آماری آنتروپی
بر مبنای تعریف آماری ، فرض میشود که در واقع میتوانیم با استفاده از فرمول ارائه شده توسط لوودیگ بولتزمن (Ludwing Boltzmann) در سال 1896 ، آنتروپی را محاسبه کنیم:
که k، ثابت بولتزمن است:
این ثابت به صورت به ثابت گاز ربط دارد. کمیت W تعداد راههای متفاوتی است که سیستم میتواند با توزیع اتمها یا مولکولها بر روی حالتهای در دسترس به انرژی خاصی برسد. واحد آنتروپی با واحد k یکسان است. در نتیجه واحد آنتروپی مولی ، میباشد؛ (این با واحد R و ظرفیت گرمایی یکی است.)
تعریف ترمودینامیکی انرژی
در روش ترمودینامیکی ، تمرکز بر روی تغییر آنتروپی در طول یک فرایند ، dS ، میباشد، نه مقدار معلق S. تعریف dS بر این مبناست که میتوان میزان پخش انرژی را به انرژی مبادله شده به صورت گرما ، در حین انجام فرایند ربط داد. تعاریف آماری و ترمودینامیکی با هم سازگار میباشند. در شیمی فیزیک این یک لحظه نشاط آور است که بین خواص تودهای (که مورد نظر ترمودینامیک است) و خواص اتمها یک ارتباط برقرار شود.
تغییر آنتروپی محیط
تغییر آنتروپی محیط را با علامت 'dS نشان میدهیم. علامت پریم مربوط به محیط سیستم واقعی که در سیستم منزوی بزرگ قرار دارد، مربوط میشود. محیط را با یک مخزن حرارتی بزرگ (عملا یک حمام آب) نشان میدهیم که در دمای T باقی میماند. مقدار گرمای منتقل شده به مخزن در اثر انجام کار مانند سقوط یک وزنه را با 'dq نشان میدهیم که این گرما به مخزن منتقل میشود. هرچه مقدار گرمای بیشتری به مخزن منتقل شود، حرکت حرارتی بیشتری هم در آن ایجاد میشود و از این رو ، پخش انرژی به میزان بیشتری اتفاق میافتد. از این نکته استنباط میشود که:
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 5 صفحه
قسمتی از متن .doc :
شیمی آنتروپی
شیمی کوانتومی ، دانش کاربرد مکانیک کوانتومی در مسایل مربوط به شیمی است. اثر شیمی کوانتومی ، در شاخههای وابسته به شیمی قابل لمس است. مثلا :
علمای شیمی فیزیک ، مکانیک کوانتومی را (به کمک مکانیک آماری) در محاسبات مربوط به خواص ترمودینامیکی (مانند آنتروپی و ظرفیت حرارتی) گازها ، در تفسیر طیفهای مولکولی به منظور تائید تجربه خواص مولکولی (مانند طولها و زوایای پیوندی) ، در محاسبات نظری خواص مولکولی ، برای محاسبه خواص حالات گذار واکنشهای شیمیایی به منظور برآورد ثابتهای سرعت واکنش ، برای فهم نیروهای بین مولکولی و بالاخره برای بررسی ماهیت پیوند در جامدات بکار میبرند.
علمای شیمی آلی از مکانیک کوانتومی ، برای برآورد پایداریهای نسبی مولکولها ، محاسبه خواص واسطههای واکنش ، بررسی ساز و کار واکنشهای شیمیایی ، پیش بینی میزان ترکیبات و تحلیل طیفهای NMR استفاده میکنند.
علمای شیمی تجزیه از مکانیک کوانتومی برای تفسیر شدت و فرکانسهای خطوط طیفی استفاده میکنند.
علمای شیمی معدنی از نظریه میدان لیگاند که یک روش تقریبی مکانیک کوانتومی است، در توضیح خواص یونهای مرکب فلزات واسطه سود میبرند.
روش های تشخیص واکنش های خود به خودی
عوامل خودبه خود بودن واکنش های شیمیای: 1-کاهش آنتالپی 2-افزایش آنتروپی
کاهش آنتالپی: انرژی درونی با پایداری رابطه ی عکس دارد پس تمام سیستم ها تمایل دارند با کاهش آنتالپی (انرژی درونی)خود به پایداری بیشتری برسند.
افزایش آنتروپی:
به طور کلی هرچه میزان تحرک ذرات تشکیل دهنده ی سیستم بیشترباشد نظم سیستم کمتراست.آنتروپی نشان دهنده ی میزان بی نظمی یک سیستم است
نکته1: افزایش دما سبب افزایش آنتروپی می شود.
نکته 2:آنتروپی در صفر مطلق برابر صفر می باشد.
تشخیص خودبه خودی بودن واکنش های شیمیایی:
1 - آنتروپی افزایش آنتالپی کاهش درهردمایی خودبه خودی
2- آنتروپی کاهش آنتالپی افزایش غیرخود به خود
3- آنتروپی افزایش آنتالپی افزایش در دماهای بالاخود به خودی و واکنش برگشت پذیر
4- آنتروپی کاهش آنتالپی کاهش در دماهای پایین خود به خودی و واکنش برگشت پذیر1
قانون دوم ترمودینامیک و آنتروپی
قانون اول ترمودینامیک به معرفی انرژی درونی ، U ، منجر شد. این کمیت تابع حالتی است که بر مبنای آن ، مجاز بودن یک فرآیند مورد قضاوت قرار میگیرد و بیان میدارد که فقط تحولاتی مجاز است که انرژی داخلی کل سیستم منزوی ، ثابت بماند. قانونی که ملاک خودبخودی بودن را مشخص میسازد (قانون دوم ترمودینامیک) ، برحسب تابع حالت دیگری بیان میشود. این تابع حالت ، آنتروپی ، S ، است.
ملاحظه خواهیم کرد که بر مبنای آنتروپی قضاوت میکنیم که آیا یک حالت بطور خودبخودی از حالت دیگری قابل حصول میباشد. در قانون اول با استفاده از انرژی داخلی ، تحولات مجاز مشخص میشود (آنهایی که انرژی ثابت دارند). از قانون دوم با استفاده از آنتروپی ، تحولات خودبخودی از بین همان فرآیندهایی مشخص میشود که بر مبنای قانون اول مجاز میباشد.
بیان قانون دوم
آنتروپی سیستم منزوی در یک فرآیند خودبخودی افزایش مییابد:
که ، آنتروپی تمام قسمتهای سیستم منزوی میباشد.
از آنجایی که فرآیندهای برگشت ناپذیر (مانند سرد شدن شیئی تا دمای محیط و انبساط آزاد گازها) خودبخودی است، در نتیجه همه آنها با افزایش آنتروپی توام میباشند. این نکته را میتوان به این صورت مطرح کرد که در فرایندهای برگشت ناپذیر آنتروپی تولید میشود. از طرف دیگر ، در فرایند برگشت پذیر توازن وجود دارد، یعنی سیستم با محیط در هر مرحله در تعادل است. هر مرحله بسیار کوچک در این مسیر برگشت پذیر بوده و پخش نامنظم انرژی روی نمیدهد و در نتیجه آنتروپی افزایش نمییابد، یعنی در فرآیند برگشت پذیر آنتروپی ایجاد نمیشود. آنتروپی در فرآیندهای برگشت پذیر از بخشی از سیستم منزوی به بخش دیگری منتقل میگردد.
تعریف آماری آنتروپی
بر مبنای تعریف آماری ، فرض میشود که در واقع میتوانیم با استفاده از فرمول ارائه شده توسط لوودیگ بولتزمن (Ludwing Boltzmann) در سال 1896 ، آنتروپی را محاسبه کنیم:
که k، ثابت بولتزمن است:
این ثابت به صورت به ثابت گاز ربط دارد. کمیت W تعداد راههای متفاوتی است که سیستم میتواند با توزیع اتمها یا مولکولها بر روی حالتهای در دسترس به انرژی خاصی برسد. واحد آنتروپی با واحد k یکسان است. در نتیجه واحد آنتروپی مولی ، میباشد؛ (این با واحد R و ظرفیت گرمایی یکی است.)
تعریف ترمودینامیکی انرژی
در روش ترمودینامیکی ، تمرکز بر روی تغییر آنتروپی در طول یک فرایند ، dS ، میباشد، نه مقدار معلق S. تعریف dS بر این مبناست که میتوان میزان پخش انرژی را به انرژی مبادله شده به صورت گرما ، در حین انجام فرایند ربط داد. تعاریف آماری و ترمودینامیکی با هم سازگار میباشند. در شیمی فیزیک این یک لحظه نشاط آور است که بین خواص تودهای (که مورد نظر ترمودینامیک است) و خواص اتمها یک ارتباط برقرار شود.
تغییر آنتروپی محیط
تغییر آنتروپی محیط را با علامت 'dS نشان میدهیم. علامت پریم مربوط به محیط سیستم واقعی که در سیستم منزوی بزرگ قرار دارد، مربوط میشود. محیط را با یک مخزن حرارتی بزرگ (عملا یک حمام آب) نشان میدهیم که در دمای T باقی میماند. مقدار گرمای منتقل شده به مخزن در اثر انجام کار مانند سقوط یک وزنه را با 'dq نشان میدهیم که این گرما به مخزن منتقل میشود. هرچه مقدار گرمای بیشتری به مخزن منتقل شود، حرکت حرارتی بیشتری هم در آن ایجاد میشود و از این رو ، پخش انرژی به میزان بیشتری اتفاق میافتد. از این نکته استنباط میشود که:
لینک دانلود و خرید پایین توضیحات
دسته بندی : پاورپوینت
نوع فایل : .ppt ( قابل ویرایش و آماده پرینت )
تعداد اسلاید : 226 اسلاید
قسمتی از متن .ppt :
مبانی شیمی کوانتومیرشته شیمیتعداد واحد: 3
منبع: شیمی کوانتومی
تالیف: دکتر قاسم خدادادی
انتشارات : دانشگاه پیام نور
تهیه کننده: محسن افتاده – عضو هیئت علمی مرکز اصفهان
تاریخ: 1/6/1385
فصل1
مکانیک کلاسیک منظومه های ذره ای
مختصات و درجه های آزادی منظومه
حرکت باید نسبت به یک چهارچوب معین که آن را ثابت فرض می کنند مطالعه شود
وضع نقطه مادی M در فضا به وسیله بردار OM که بردار موضعی Mنام دارد یا تصاویر آن بر روی سه محور توصیف می شود
r
O
M
x
y
z
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 13
دلایل ظهور مکانیک کوانتومی
بررسی ساختار اتمی به این نتیجه منجر میشود که رفتار الکترونها در اتم را نظیر رفتار فوتونها ، نمیتوان با قوانین فیزیک کلاسیک یعنی قوانینی که در آزمایش با اجسام ماکروسکوپی ثابت میشوند، توضیح داد. وجود ترازهای انرژی گسسته در لایههای الکترونی اتم و قواعد حاکم بر انتقال بین ترازها و پر شدن این حالتهای انرژی را نیز نمیتوان با بکارگیری مفاهیم قراردادی مکانیک و قوانین الکترومغناطیس توجیه کرد.
نظریه دوبروی در مکانیک کوانتومی
قدم مهم در روشن شدن تناقضات بین مکانیک کلاسیک و مکانیک کوانتومی توسط دوبروی فیزیکدان فرانسوی برداشته شد. ایشان کسی بود که این تفکر را که نه تنها فوتونها بلکه تمام ذرات دارای خواص موجی هستند، پیشنهاد و اثبات کرد. این خواص با قوانین کلاسیکی قابل بیان نیستند، ولی نقش مهمی در پدیدههای اتمی بازی میکنند. معلوم شده است که کوانتوم تابش الکترومغناطیسی ، یعنی فوتونها ، با اندازه حرکت P = E/C مشخص می شوند. در ضمن موج نوری با فرکانس ν دارای طول موج λ = ν/C است.با حذف فرکانس از این رابطهها ،رابطه بین طول موج و اندازه حرکت فوتون به دست می آید. λ = h/P در صورتی که خواص فوتونها و سایر ذرات همان گونه که با فرضیه دوگانگی موج و ذره پیش بینی شد، واقعا نظیر هم باشند.
این رابطه باید برای هر ذره کاربرد داشته باشد. به این طریق ، فرمول طول موج دوبروی بدست آمد. طول موج دوبروی به ذره ای با اندازه حرکت P برای بیان خواص موجی آن نسبت داده میشود. اگر سرعت ذره ای با جرم سکون m در مقایسه با سرعت نور کم باشد، فرمول طول موج دوبروی را میتوان به صورت زیر نوشت:
λ = h/mv
مبنای تجربی دیدگاه موجی ذرات
اعتبار نظریه دوبروی با آزمایش پراکندگی الکترونی در بلورها تایید شد. قبلا ، شبیه این آزمایش ، آزمایش پراکندگی اشعه ایکس در بلورها برای اثبات ماهیت موجی اشعه ایکس استفاده شده بود. بر اثر تداخل فیزیک امواج ثانویه گسیلی از اتمهای بلور که آرایش منظم دارند، پراکندگی به جای تمام جهات فقط با زاویه معین نسبت به باریکه تابشی روی میدهد. علاوه بر نقطه مرکزی حاصل از باریکه مستقیم ، حلقههایی نیز از تابش پراکنده شده (پراش یافته) روی فیلم عکاسی واقع در پشت بلور ، پراکنده میشود. معلوم شده است که اگر بلور به جای اشعه ایکس با الکترونها بمباران شود، الکترونهای پراکنده شده نیز روی فیلم عکاسی دسته حلقههایی همانند حلقههای ایجاد شده توسط اشعه ایکس تشکیل میدهند. به این ترتیب میتوانیم بپذیریم که الکترونها تداخل میکنند، یعنی دارای خواص موجی هستند. بعدها پدیدههای پراش برای سایر ذرات ، یعنی اتمها ، مولکولها و نوترونها نیز مشاهده شد.
این آزمایشها بطور انکار ناپذیری ثابت کردند که در بعضی از پدیدهها ، ریز ذرات همانند امواج رفتار میکنند. همچنین این آزمایشها به دانشمندان امکان تعیین طول موجی را دادند که برای بیان پراش ذره باید به آن نسبت داده شود. نتایج تجربی حاصل برای طول موج با مقدار حاصل از فرمول دوبروی توافق کامل داشتند. بنابرین ، معلوم گردید که طول موج با عکس حاصلضرب جرم ذره در سرعت آن mv متناسب بوده و ضریب تناسب همان ثابت پلانک است. ثابت پلانک بسیار کوچک h = 6.6 x 10-34 j.s است.
طول موج دوبروی وابسته به موج مادی
چون ثابت پلانک بسیار کوچک است، به همین علت طول موج دو بروی برای ذره ای با جرم محسوس ، خیلی کوچک و در حد قابل اغماض است. مطابق فرمول دوبروی ، یک ذره خاک با جرم حدود میکروگرم ( 9-10 کیلوگرم ) که با سرعت 1Cm/s در حرکت است دارای طول موج
λ = 6.6x10-34/(10-11)6.6x10-23 m است. این مقدار حتی در مقایسه با ابعاد اتمی نیز تا حد قابل اغماض کوچک است. برای اتمها و الکترونها با جرمی بسیار کوچکتر از میکروگرم وضعیت متفاوتی پیش میآید. در سرعتهای معمولی ، طول موج وابسته به آنها در حدود طول موج پرتوهای ایکس است. برای مثال در مورد اتم هلیوم با انرژی 0.04 ev (انرژی حرکت گرمایی در اتاق) ، λ = 0.7x10-10 m و برای الکترون با انرژی 13.5 ev طول موج دوبروی برابر λ = 3.3x10-10 m است.
با توجه به قوانین و مفاهیم نور شناسی نتیجه میگیریم، ماهیت موجی نور وقتی به وضوح آشکار میشود که طول موجها با ابعاد اجسامی که نور با آنها اندرکنش میکند قابل مقایسه باشد. برای مثال وقتی نور از روزنهای میگذرد که ابعاد آن چند برابر طول موج است، یا وقتی از توری پراشی بازتابیده میشود که ثابت توری آن کوچک است، از خواص موجی نور می توان صرف نظر کرد، زیرا عملا غیر قابل ملاحظهاند. همینطور خواص موجی ذرات فقط وقتی مهمند که طول موج دوبروی در مقایسه با ابعاد اجسامی که اندرکنش با آنها صورت میگیرد، کوچک نباشد. هنگام اندرکنش اتمها با الکترونها یا با ریز ذرات دیگری که برای آنها طول موج دوبروی در حدود ابعاد اتمی است، خواص موجی ذرات نقش مهم و گاهی تعیین کننده دارند. هرگاه فرآیندها وابسته به رفتار الکترونها در اتمها یا مولکولها باشد، این نقش مهمتر است.
زمینه ظهور مکانیک کوانتومی
وقتی که ذرات با ابعاد ماکروسکوپی اندرکنش میکنند، ذراتی که برای آنها طول موج دوبروی تقریبا 9-10 برابر ابعاد آنهاست، خواص موجی نباید در نظر گرفته شود. به همین علت مکانیک کلاسیک که قوانین آن از بررسیهای اجسام بزرگ بدست میآید و خواص موجی اجسام هرگز به حساب نمیآید، نمیتواند پدیدههای مربوط به این ذرات را بررسی
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 5 صفحه
قسمتی از متن .doc :
شیمی آنتروپی
شیمی کوانتومی ، دانش کاربرد مکانیک کوانتومی در مسایل مربوط به شیمی است. اثر شیمی کوانتومی ، در شاخههای وابسته به شیمی قابل لمس است. مثلا :
علمای شیمی فیزیک ، مکانیک کوانتومی را (به کمک مکانیک آماری) در محاسبات مربوط به خواص ترمودینامیکی (مانند آنتروپی و ظرفیت حرارتی) گازها ، در تفسیر طیفهای مولکولی به منظور تائید تجربه خواص مولکولی (مانند طولها و زوایای پیوندی) ، در محاسبات نظری خواص مولکولی ، برای محاسبه خواص حالات گذار واکنشهای شیمیایی به منظور برآورد ثابتهای سرعت واکنش ، برای فهم نیروهای بین مولکولی و بالاخره برای بررسی ماهیت پیوند در جامدات بکار میبرند.
علمای شیمی آلی از مکانیک کوانتومی ، برای برآورد پایداریهای نسبی مولکولها ، محاسبه خواص واسطههای واکنش ، بررسی ساز و کار واکنشهای شیمیایی ، پیش بینی میزان ترکیبات و تحلیل طیفهای NMR استفاده میکنند.
علمای شیمی تجزیه از مکانیک کوانتومی برای تفسیر شدت و فرکانسهای خطوط طیفی استفاده میکنند.
علمای شیمی معدنی از نظریه میدان لیگاند که یک روش تقریبی مکانیک کوانتومی است، در توضیح خواص یونهای مرکب فلزات واسطه سود میبرند.
روش های تشخیص واکنش های خود به خودی
عوامل خودبه خود بودن واکنش های شیمیای: 1-کاهش آنتالپی 2-افزایش آنتروپی
کاهش آنتالپی: انرژی درونی با پایداری رابطه ی عکس دارد پس تمام سیستم ها تمایل دارند با کاهش آنتالپی (انرژی درونی)خود به پایداری بیشتری برسند.
افزایش آنتروپی:
به طور کلی هرچه میزان تحرک ذرات تشکیل دهنده ی سیستم بیشترباشد نظم سیستم کمتراست.آنتروپی نشان دهنده ی میزان بی نظمی یک سیستم است
نکته1: افزایش دما سبب افزایش آنتروپی می شود.
نکته 2:آنتروپی در صفر مطلق برابر صفر می باشد.
تشخیص خودبه خودی بودن واکنش های شیمیایی:
1 - آنتروپی افزایش آنتالپی کاهش درهردمایی خودبه خودی
2- آنتروپی کاهش آنتالپی افزایش غیرخود به خود
3- آنتروپی افزایش آنتالپی افزایش در دماهای بالاخود به خودی و واکنش برگشت پذیر
4- آنتروپی کاهش آنتالپی کاهش در دماهای پایین خود به خودی و واکنش برگشت پذیر1
قانون دوم ترمودینامیک و آنتروپی
قانون اول ترمودینامیک به معرفی انرژی درونی ، U ، منجر شد. این کمیت تابع حالتی است که بر مبنای آن ، مجاز بودن یک فرآیند مورد قضاوت قرار میگیرد و بیان میدارد که فقط تحولاتی مجاز است که انرژی داخلی کل سیستم منزوی ، ثابت بماند. قانونی که ملاک خودبخودی بودن را مشخص میسازد (قانون دوم ترمودینامیک) ، برحسب تابع حالت دیگری بیان میشود. این تابع حالت ، آنتروپی ، S ، است.
ملاحظه خواهیم کرد که بر مبنای آنتروپی قضاوت میکنیم که آیا یک حالت بطور خودبخودی از حالت دیگری قابل حصول میباشد. در قانون اول با استفاده از انرژی داخلی ، تحولات مجاز مشخص میشود (آنهایی که انرژی ثابت دارند). از قانون دوم با استفاده از آنتروپی ، تحولات خودبخودی از بین همان فرآیندهایی مشخص میشود که بر مبنای قانون اول مجاز میباشد.
بیان قانون دوم
آنتروپی سیستم منزوی در یک فرآیند خودبخودی افزایش مییابد:
که ، آنتروپی تمام قسمتهای سیستم منزوی میباشد.
از آنجایی که فرآیندهای برگشت ناپذیر (مانند سرد شدن شیئی تا دمای محیط و انبساط آزاد گازها) خودبخودی است، در نتیجه همه آنها با افزایش آنتروپی توام میباشند. این نکته را میتوان به این صورت مطرح کرد که در فرایندهای برگشت ناپذیر آنتروپی تولید میشود. از طرف دیگر ، در فرایند برگشت پذیر توازن وجود دارد، یعنی سیستم با محیط در هر مرحله در تعادل است. هر مرحله بسیار کوچک در این مسیر برگشت پذیر بوده و پخش نامنظم انرژی روی نمیدهد و در نتیجه آنتروپی افزایش نمییابد، یعنی در فرآیند برگشت پذیر آنتروپی ایجاد نمیشود. آنتروپی در فرآیندهای برگشت پذیر از بخشی از سیستم منزوی به بخش دیگری منتقل میگردد.
تعریف آماری آنتروپی
بر مبنای تعریف آماری ، فرض میشود که در واقع میتوانیم با استفاده از فرمول ارائه شده توسط لوودیگ بولتزمن (Ludwing Boltzmann) در سال 1896 ، آنتروپی را محاسبه کنیم:
که k، ثابت بولتزمن است:
این ثابت به صورت به ثابت گاز ربط دارد. کمیت W تعداد راههای متفاوتی است که سیستم میتواند با توزیع اتمها یا مولکولها بر روی حالتهای در دسترس به انرژی خاصی برسد. واحد آنتروپی با واحد k یکسان است. در نتیجه واحد آنتروپی مولی ، میباشد؛ (این با واحد R و ظرفیت گرمایی یکی است.)
تعریف ترمودینامیکی انرژی
در روش ترمودینامیکی ، تمرکز بر روی تغییر آنتروپی در طول یک فرایند ، dS ، میباشد، نه مقدار معلق S. تعریف dS بر این مبناست که میتوان میزان پخش انرژی را به انرژی مبادله شده به صورت گرما ، در حین انجام فرایند ربط داد. تعاریف آماری و ترمودینامیکی با هم سازگار میباشند. در شیمی فیزیک این یک لحظه نشاط آور است که بین خواص تودهای (که مورد نظر ترمودینامیک است) و خواص اتمها یک ارتباط برقرار شود.
تغییر آنتروپی محیط
تغییر آنتروپی محیط را با علامت 'dS نشان میدهیم. علامت پریم مربوط به محیط سیستم واقعی که در سیستم منزوی بزرگ قرار دارد، مربوط میشود. محیط را با یک مخزن حرارتی بزرگ (عملا یک حمام آب) نشان میدهیم که در دمای T باقی میماند. مقدار گرمای منتقل شده به مخزن در اثر انجام کار مانند سقوط یک وزنه را با 'dq نشان میدهیم که این گرما به مخزن منتقل میشود. هرچه مقدار گرمای بیشتری به مخزن منتقل شود، حرکت حرارتی بیشتری هم در آن ایجاد میشود و از این رو ، پخش انرژی به میزان بیشتری اتفاق میافتد. از این نکته استنباط میشود که: