این تحقیق ، با موضوع تأثیر میزان سردکردن بر میکروساختار و خصوصیات مکانیکی فولادهای میکروآلیاژی Nb بصورت Word انجام گرفته است.تحقیق برای رشته مهندسی مواد و متالوژی مناسب است و در 14 برگه می باشد. شما می توانید این تحقیق را بصورت کامل و آماده تحویل از پایین همین صفحه دانلود نمایید.
بلافاصله بعد از پرداخت و خرید ، لینک دانلود نمایش داده می شود، علاوه بر آن لینک فایل مربوطه به ایمیل شما نیز ارسال می گردد.
1- مقدمه
سردکردن سریع از فولادهای میکروآلیاژ که قبلاً به طور مکانیکی حرارت دیده اند، هم اکنون به طور گسترده به عنوان وسیله ای برای به دست آوری قدرت زیاد در رابطه با سختی بسیار زیاد و توانایی شکل پذیری به کار میروند. این رفتار و شیوه همراه با تأثیر میزان سردکردن روی انتقال و شکل گیری چدن به ترکیبات میکروساختار مختلف میباشد، که به طور تقریبی، خصوصیات نهایی را تعیین مینماید. بدین خاطر، سردکردن سریع قدرتمندی فولادهای میکروآلیاژی با کربن کم را به وجود میآورد و مادهی آن به همان نسبت سختی بسیار زیاد به دست میآید. این حالت از طریق دو سودمندی اولیه از پالایش و خالص سازی هیدروکسید آهن و تغییر درجه حرارت به طور قابل ملاحظه ای «بینیت» و هیدروکسید «آسیکولار» به دست میآید.
در سردکردن سریع، کاهش حالت چدنی به شکل پذیری هیدروکسید آهنی، هسته ی هیدروکسید آهن را در خلوص چدن با درجه حرارت ترغیب به خلوص درونی میکند:
میزان هسته ای بالارفته، رشد خلوص را که مربوط به تخطی از دانه دانه شدن درونی است و دانه دانه شدن هیدروکسیدی که منتهی به بهبود کیفی خلوص هیدروکسید آهن میشود را، محدود میکند.
به طور کلی، با افزایش میزان سردکردن، طبیعت و دانه بندی هیدروکسید آهن از حالت کثیرالاضلاعی به نوع لایه ای یا باریک و کشیده و غالباً به صورت لایه ای و نوع آجی سوزنی شکل تغییر شکل میدهد. علاوه بر این، ترکیب دو ظرفیتی ناب و خالص، به دست میآید، زیرا توقف پراکندگی کربن در کار است.
به طور خلاصه، سردکردن سریع بعد از چرخش کنترل شونده به یک میکرو ساختار کاملاً خالص شده با تغییر شکل پذیری تولیدات حرارتی منتهی میشود.
میکروساختارهای چدن نشکن بینیتی، در فولادهای میکرو آلیاژی کم کربن به دست میآیند که به عنوان یک هیدروکسید بینیتی یا یک هیدروکسید سوزنی شکل، آجی یا یک چدن نشکن بینیت رسوبی میباشند. در جایی، گاهگاهی میکروساختاری مخلوط شده در قدرتی بالا با آلیاژی کم به دست میآید (HSLA) این فولادها در میزان سردکردن بالا به دست میآیند. میکروساختارهای بینیتی همچنین به عنوان یک بینیت کم کربن یا پرکربن خصوصیت بندی میشوند. «ناحیهی دوباره بلوره شدن» با افزایش در میزان سردکردن، نوع هیدروکسید لایه ای، (با یا بدون- ترکیب دو ظرفیتی) در حد ومرزهای خالص چدنی هسته ای میشود و به عنوان بینیت کم کربن سطح بالا طراحی میشود (ULCB)
این میکروساختار در درصد کم تغییر شکل پذیری و میزانهای سردکردن بالا به دست میآیند. هیدروکسید آهن نوع لایه ای، در میزان بالای سردکردن تنظیم میشود در حالی که، آنها به طور نامرتب در میزان سردکردن کمتر جمع میشوند. در درصد بالای شکل پذیری، طول و عرض لایهها در بستههای مفرده کاهش مییابد.
رشد لایههای هیدروکسید آهن بینیتی خالص توسط میزان هسته ای زیرمجموعهها کنترل میشود که در چرخش بستگی به نیروی محرک (زیر درجه سردکردن) برای واکنش فاز تغییر شکل دارد. با افزایش در میزان سردکردن، درجه حرارت فاز تغییر شکل، Ar3، کاهش و تغییر شکل در میزانی که به سرعت از میان دو منطقهی فازی رسوبی نیرویی از هیدروکسید آهن حداقل است همچنین، تغییر ناپذیری، نیروی محرک تغییر پذیری را تحت عمل قرار میدهد و استمرار شکل گیری سردکردن حرکت منحنی شکل پذیری آلیاژ آهن و کربن به زمانهای زیادی احتیاج دارد. «به طور مثال: به سمت راست».
در مطالعهی گزارش شده قبلی، ما مقایسه ای از رفتار مکانیکی Nb، فولادهای میکرو آلیاژ-V که به طور صنعتی تحت شرایط مشابه قرار داشتند، داریم.
تضادی شوکه کننده در سختی فشردگی این دو فولاد میکروآلیاژی وجود داشت، حتی اگرچه، آنها با نیروی به دست آمده مشابه خصوصیت بندی میشدند. این رفتار به اختلافات در محتوای میکروساختاری منتهی میشد. این تحقیق در اینجا آنچه توضیح داد، به تبعیت از کار قبلی، میباشد و به صورت ریز، تأثیر میزان خنک سازی روی قدرت سختی فشرده که ترکیبی از فولادهای میکروآلیاژ فلز «نوبیدیوم» در مواردی از میکروساختار را امتحان میکند و به رابطه میکروساختار با خصوصیات شکستگی نمونههای فشردهی تست شده توجه میکند.
فهرست مطالب1- مقدمه. 12- تجربی.. 23- میزان ترکیب شیمیایی فولادهای میکروآلیاژیNb. 34- نتایج و توضیحات.. 35- ساختار میکروسکوپی فولاد میکروآلیاژ-Nb. 46- تأثیر سرعت سردکردن بر روی میکروساختار فریت... 67- اثر سرعت سرد کردن بر روی میکرو ساختار پرلیت... 88- رسوب در فولاد میکروآلیاژ Nb. 99- تأثیر سرعت سرد کردن بر روی استحکام ـ تافنس در فولادهای میکروآلیاژ Nb. 1010- مقامت به شکست فولادهای میکروآلیاژ Nb در سرعت سردکردن.. 1011- نتیجه گیری.. 11لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 27
اثر عناصر آلیاژی بر میکروساختار و استحکام چدن خاکستری :خلاصه:آزمایشات ریخته گری برای تولید چدنهای خاکستری باترکیباتی در محدوده(درصد وزنی):
Fe–3.2C–wCu–xMo–yMn–zSi که w = 0.78–1.79, x = 0.11–1.17, y = 0.68–2.34 و
z = 1.41–2.32 انجام شده است.این عناصر کلیدی بطور سیستماتیک در طی ریخته گری ماسه ای بصورت میلگردهای با قطر 30-mm برای ارزیابی تاثیرشان بر توسعه میکروساختار و خواص مکانیکی،تغییریافتند.معلوم شد که محدوده میکروساختارها از پرلیت کامل تا ترکیبی از آستنیت باقیمانده و فریت بینیتی به اصطلاح آسفریت (ausferrite) تولید شدند و یک همبستگی خطی مستدل بین کسر حجمی شکستن و استحکام آسفریت مشاهده شد. ترکیب بهینه خواص مکانیکی در یک آلیاژ با ترکیب تقریبی Fe–3.2C–1.0Cu–0.7Mo–0.55Mn–2.0Si بدست آمد که 100% آسفریت بدون کاربیدهای آلیاژی تولید شد. این آلیاژ یک میکروساختار و خواص مکانیکی قابل مقایسه با چدن خاکستری آستمپر شده بدون مشکلات زیاد همراه با آستمپرینگ داشت.کلمات کلیدی: چدن خاکستری، میکروساختار، ریخته گری و آسفریت1- مقدمهچدن خاکستری یک گروه وسیع از آلیاژهای ریختگی آهنی است که معمولا" بوسیله یک میکروساختار از گرافیت ورقه ای (flake graphite) در یک زمینه آهنی مشخص می شود. آن اساسا" یک آلیاژ Fe–C–Si شامل مقادیر کوچکی از عناصر آلیاژی دیگر و بیشترین آلیاژ ریختگی مورداستفاده و با تولید جهانی سالیانه 6 میلیون تن است که چندین برابر دیگر فلزات ریختگی است[1].میکروساختار چدن خاکستری معمولا" شامل گرافیت ورقه ای و یک زمینه پرلیت و یا فریت است که خواص مکانیکی، قابلیت ماشینکاری و غیره به آن بستگی دارد. چدنهای خاکستری معمولی، زمینه پرلیتی و استحکام کششی در محدوده 140 تا 400 Mpa دارند. وسیله اصلی برای بهبود خواص مکانیکی، کاهش کربن معادل است که درصد گرافیت را کاهش و پرلیت را افزایش می دهد. جدول(1) انواع تجاری چدن خاکستری و خواص مکانیکی مربوط به آنها را نشان می دهد.برای بهبود خواص چدن خاکستری، تحقیق بر روی گسترش میکروساختار آسفریت بیش از 40 سال انجام گرفته است[6-2]. یک بهبود مهم ویژه در خواص، نتیجه ای از گسترش چدن خاکستری آستمپر شده است[7-3]. چدنهای خاکستری آستمپر شده به مهندس چاره هایی با ترکیبات فرایندی/موادی معمولی پیشنهاد می دهد[7]. از طریق آستمپرینگ، زمینه فریتی یا پرلیتی، چدن خاکستری به یک ساختار سوزنی شامل 70 تا 80% فریت بینیتی بدون کاربید و آستنیت باقیمانده 20 تا 30% تغییر می یابد. چنین ساختاری به اصطلاح آسفریت است[6]. نشان داده شده است که چنین ساختار زمینه ای، یک چدن خاکستری با یک ترکیب منحصر بفرد از استحکام، مقاومت سایشی، جذب صدا و یا لرزش و تافنس شکست بالا را تولید می کند[6و7].یک عملیات حرارتی معمولی آستمپرینگ چدن خاکستری، آستنیته کردن در دمای 840–900º C برای چند ساعت بر اساس ترکیب و ضخامت ریختگی و آستمپر کردن در 230–425º C است[6و7].در حالی که این برنامه زمانی عملیات حرارتی تولید چدن خاکستری با یک محدوده عالی از خواص ، به انرژی قابل ملاحظه و فضای تولید نیاز دارد و ممکن است باعث آلودگی محیطی بعلاوه اکسیداسیون و ترک در اجزا شود. این مشکلات ، تولید گسترده چدن خاکستری آستمپر شده را محدود کرده اند، بنابراین تحقیق بر روی گسترش چدن خاکستری آسفریتی را بوسیله ریخته گری مستقیم وادار می کنند[5]. کار حاضر قصد دارد نشان دهد که چگونه تغییرات سیستماتیک در اضافه کردن آلیاژی به یک چدن خاکستری معمولی در طی ریخته گری می تواند یک آلیاژ با میکروساختار فریت بینیتی-آستنیتی (آسفریتی) با خواص مکانیکی قابل مقایسه با چدن خاکستری آستمپر شده را تولید کند.جدول(1): ترکیب و خواص مکانیکی کلاسهای مختلف چدن خاکستری
Class
Total carbon (wt.%)
Total silicon (wt.%)
Tensile strength (MPa)
Transverse load on test bar (kg f)
Hardness (HB)
20
3.40–3.60
2.30–2.50
152
839
56
25
-
-
179
987
174
30
3.10–3.30
2.10–2.30
214
1145
210
35
-
-
252
1293
212
2- تجربی2-1- مواد و روش ریخته گریهدف اصلی از کار حاضر تعیین تاثیر عناصر آلیاژی کلیدی بر توسعه