حریم فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

حریم فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

پاورپوینت در مورد پدیده های غیرخطی

پاورپوینت در مورد پدیده های غیرخطی

لینک دانلود و خرید پایین توضیحات

دسته بندی : پاورپوینت

نوع فایل :  .ppt ( قابل ویرایش و آماده پرینت )

تعداد اسلاید : 64 اسلاید

 قسمتی از متن .ppt : 

 

مقدمه

1- آشنایی با پدیده های غیرخطی

(یاد آوری و تکمیل)

2- مبانی ریاضی

(مهم)

مقد مه

مبانی ریاضی

اهداف:

1- یاد آوری فضای برداری و آشنایی با فضای نرمدار

2- یاد آوری همگرایی و آشنایی با فضای باناخ

3- آشنایی با فضای حاصلضربی و هیلبرت

4- آشنایی با نرمهای ماتریسی

5- نگاشت انقباضی و شرایط وجود جواب منحصر بفرد

6- روش تقریب جواب سیستمهای غیرخطی با باند بالا و پایین

مقدمه - 2

مبانی ریاضی

مقدمه - 2

مبانی ریاضی

فضای برداری خطی

فضای برداری خطی را می توان در قالب فضای برداری حقیقی و یا مختلط مطالعه نمود.

فضای برداری روی یک میدان تعریف می شود که ما در این مبحث میدان را اعداد حقیقی و یا موهومی در نظر می گیریم.

تعریف: فضای برداری خطی مجموعه V با دو عمل

که دارای خواص زیر است تعریف می شود.

یک و فقط یک عضو ov در V وجود دارد بطوری که:

برای هر x در V عضو x- در V وجود دارد بطوری که:

مقدمه - 2

مبانی ریاضی

فضای برداری خطی (ادامه)



خرید و دانلود پاورپوینت در مورد پدیده های غیرخطی


پاورپوینت در مورد پدیده های غیرخطی

پاورپوینت در مورد پدیده های غیرخطی

لینک دانلود و خرید پایین توضیحات

دسته بندی : پاورپوینت

نوع فایل :  .ppt ( قابل ویرایش و آماده پرینت )

تعداد اسلاید : 64 اسلاید

 قسمتی از متن .ppt : 

 

مقدمه

1- آشنایی با پدیده های غیرخطی

(یاد آوری و تکمیل)

2- مبانی ریاضی

(مهم)

مقد مه

مبانی ریاضی

اهداف:

1- یاد آوری فضای برداری و آشنایی با فضای نرمدار

2- یاد آوری همگرایی و آشنایی با فضای باناخ

3- آشنایی با فضای حاصلضربی و هیلبرت

4- آشنایی با نرمهای ماتریسی

5- نگاشت انقباضی و شرایط وجود جواب منحصر بفرد

6- روش تقریب جواب سیستمهای غیرخطی با باند بالا و پایین

مقدمه - 2

مبانی ریاضی

مقدمه - 2

مبانی ریاضی

فضای برداری خطی

فضای برداری خطی را می توان در قالب فضای برداری حقیقی و یا مختلط مطالعه نمود.

فضای برداری روی یک میدان تعریف می شود که ما در این مبحث میدان را اعداد حقیقی و یا موهومی در نظر می گیریم.

تعریف: فضای برداری خطی مجموعه V با دو عمل

که دارای خواص زیر است تعریف می شود.

یک و فقط یک عضو ov در V وجود دارد بطوری که:

برای هر x در V عضو x- در V وجود دارد بطوری که:

مقدمه - 2

مبانی ریاضی

فضای برداری خطی (ادامه)



خرید و دانلود پاورپوینت در مورد پدیده های غیرخطی


تحقیق درمورد روش ژاکوبی برای حل مسائل غیرخطی (رشته ریاضی کامپیوتر)

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 7

 

روش ژاکوبی برای حل مسائل غیر خطی

روش ژاکوبی در واقع تعمیمی از روش سیمپلکس برای حل مسائل خطی می‌باشد یا به عبارت دیگر روش ژاکوبی در حالتی خاص همان روش سیمپلکس می‌باشد.

تئوری روش مشتق مقید(ژاکوبی)

فرض می‎شود که توابع g, f دو بار پیوستة مشتق پذیر باشند (از ردة C2). ایدة روش ژاکوبی یافتن گوی بسته ای است که در تمام نقاط آن مشتق های جزئی مرتبه اول موجود و شرط g(x)=0 برآورده گردد. همان طور که می دانیم نقاط بحرانی نقاطی اند که مشتقات جزئی تابع در آن‌ها صفر گردد.

برای شناسایی نقاط بحرانی از شرایط کافی به شرح زیر استفاده می کنیم:

شرایط کافی برای نقطة بحرانی جهت اکسترمم بودن آن است که ماتریس هسیان محاسبه شده در نقطه

هنگامی که می نیمم است مثبت باشد .

هنگامی که ماکزیمم است منفی باشد .

برای روشن کردن این مفهوم تابع f(x1 , x2) را در نظر می گیریم. هدف می نیمم کردن تابع با توجه به محدودیت g1(x1 , x2) = x2 - b=0 می‎باشد. (b ثابت است.) منحنی ایجاد شده توسط سه نقطة C , B , A مقادیری از f را نمایش می‎دهد که محدودیت اعمال شده همواره برآورده می گردد. روش ژاکوبی، گرادیان f(x1 , x2) را در هر نقطه ای از منحنی ABC تعریف می‌کند. هر نقطه ای که مشتق آن برابر صفر گردد نشان دهنده یک نقطه بحرانی برای این مسئله مقید می‎باشد که در شکل زیر نقطة B ، نقطه موردنظر می‎باشد.

با استفاده از ق تیلور برای نقاط در همسایگی قابل قبول x داریم:

 

 

هنگامی که خواهیم داشت:

 

 

و از آنجا که g(x)=0 در نتیجه بنابراین خواهیم داشت:

 

حال یک دستگاه با (n+1) مجهول و (m+1) معادله خواهیم داشت که مجهولاتمان درایه‌های می باشند با مشخص شدن پیدا می‎شود. و این بدان معناست که در واقع m معادله با n مجهول داریم. اگر m>n آن گاه حداقل (m-n) معادله زائد می باشند. پس از حذف آنها، سیستم به تعداد کارایی از معادلات مستقل مانند کاهش خواهد یافت. برای حالتی که m=n باشد جواب می‎باشد و این نشان دهنده آن است که X همسایگی قابل قبول ندارد و فضای حل تنها از یک نقطه تشکیل یافته است. در اینجا این حالت موردنظر نیست و ما به بررسی حالت m < n می‎پردازیم.

X = ( Y, Z) Y= (y1 , ….ym) & Z= (z1 ,z2 …, zn-m)

متغیرهای مستقل و وابستة بردار X می باشند . حال بردار گرادیان f و g را با توجه به بردارهای Z , Y بازنویسی می کنیم:

 

تعریف می کنیم: که ماتریس “ژاکوبین” و ماتریس “کنترل” نامیده می‎شود.

ماتریس J یک ماتریس نامنفرد می‎باشد چرا که بنا به تعریف m معادلة موجود مستقل می‌باشند و اجزای بردار Y می‎توانند به گونه ای از X انتخاب گردند که J معکوس پذیر گردد.

با استفاده از تعاریف بالا معادلات مطرح شده را مجدداً بازنویسی می کنیم:

(*)

 

این مجموعه از معادلات از تغییر در (که Z بردار مستقل ما می‎باشد) اثر می پذیرد.

جایگذاری مقدار به دست آمده در رابطة (*) عبارت زیر را به دست می‎دهد:

 

از این معادله، مشتق مقید با توجه به بردار مستقل Z به دست می‎آید:

 

که نمایش دهندة گرادیان محدود (مقید) بردار f وابسته به Z می‎باشد. بنابراین باید در نقاط بحرانی برابر صفر باشد.

شرایط کافی مشابه قسمت قبل می‎باشد. در این حالت با این وجود ماتریس هسیان مطابق با بردار مستقل Z خواهد بود.

 

i امین سطر ماتریس هسیان می‎باشد. توجه کنید که W تابعی از Y و Y تابعی از Z می‎باشد.

بنابراین گرفتن مشتق جزئی نسبت به Zi با استفاده از قاعدة زنجیری انجام می‎گیرد.

مثال: در این مثال می خواهیم چگونگی محاسبة در نقاط داده شده با استفاده از فرمول های گفته شده را نشان دهیم. مطلوب است مطالعة تغییرات در همسایگی قابل قبول .

 



خرید و دانلود تحقیق درمورد روش ژاکوبی برای حل مسائل غیرخطی (رشته ریاضی  کامپیوتر)


تحقیق درمورد روش ژاکوبی برای حل مسائل غیرخطی (رشته ریاضی کامپیوتر) با فرمت ورد

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 7

 

روش ژاکوبی برای حل مسائل غیر خطی

روش ژاکوبی در واقع تعمیمی از روش سیمپلکس برای حل مسائل خطی می‌باشد یا به عبارت دیگر روش ژاکوبی در حالتی خاص همان روش سیمپلکس می‌باشد.

تئوری روش مشتق مقید(ژاکوبی)

فرض می‎شود که توابع g, f دو بار پیوستة مشتق پذیر باشند (از ردة C2). ایدة روش ژاکوبی یافتن گوی بسته ای است که در تمام نقاط آن مشتق های جزئی مرتبه اول موجود و شرط g(x)=0 برآورده گردد. همان طور که می دانیم نقاط بحرانی نقاطی اند که مشتقات جزئی تابع در آن‌ها صفر گردد.

برای شناسایی نقاط بحرانی از شرایط کافی به شرح زیر استفاده می کنیم:

شرایط کافی برای نقطة بحرانی جهت اکسترمم بودن آن است که ماتریس هسیان محاسبه شده در نقطه

هنگامی که می نیمم است مثبت باشد .

هنگامی که ماکزیمم است منفی باشد .

برای روشن کردن این مفهوم تابع f(x1 , x2) را در نظر می گیریم. هدف می نیمم کردن تابع با توجه به محدودیت g1(x1 , x2) = x2 - b=0 می‎باشد. (b ثابت است.) منحنی ایجاد شده توسط سه نقطة C , B , A مقادیری از f را نمایش می‎دهد که محدودیت اعمال شده همواره برآورده می گردد. روش ژاکوبی، گرادیان f(x1 , x2) را در هر نقطه ای از منحنی ABC تعریف می‌کند. هر نقطه ای که مشتق آن برابر صفر گردد نشان دهنده یک نقطه بحرانی برای این مسئله مقید می‎باشد که در شکل زیر نقطة B ، نقطه موردنظر می‎باشد.

با استفاده از ق تیلور برای نقاط در همسایگی قابل قبول x داریم:

 

 

هنگامی که خواهیم داشت:

 

 

و از آنجا که g(x)=0 در نتیجه بنابراین خواهیم داشت:

 

حال یک دستگاه با (n+1) مجهول و (m+1) معادله خواهیم داشت که مجهولاتمان درایه‌های می باشند با مشخص شدن پیدا می‎شود. و این بدان معناست که در واقع m معادله با n مجهول داریم. اگر m>n آن گاه حداقل (m-n) معادله زائد می باشند. پس از حذف آنها، سیستم به تعداد کارایی از معادلات مستقل مانند کاهش خواهد یافت. برای حالتی که m=n باشد جواب می‎باشد و این نشان دهنده آن است که X همسایگی قابل قبول ندارد و فضای حل تنها از یک نقطه تشکیل یافته است. در اینجا این حالت موردنظر نیست و ما به بررسی حالت m < n می‎پردازیم.

X = ( Y, Z) Y= (y1 , ….ym) & Z= (z1 ,z2 …, zn-m)

متغیرهای مستقل و وابستة بردار X می باشند . حال بردار گرادیان f و g را با توجه به بردارهای Z , Y بازنویسی می کنیم:

 

تعریف می کنیم: که ماتریس “ژاکوبین” و ماتریس “کنترل” نامیده می‎شود.

ماتریس J یک ماتریس نامنفرد می‎باشد چرا که بنا به تعریف m معادلة موجود مستقل می‌باشند و اجزای بردار Y می‎توانند به گونه ای از X انتخاب گردند که J معکوس پذیر گردد.

با استفاده از تعاریف بالا معادلات مطرح شده را مجدداً بازنویسی می کنیم:

(*)

 

این مجموعه از معادلات از تغییر در (که Z بردار مستقل ما می‎باشد) اثر می پذیرد.

جایگذاری مقدار به دست آمده در رابطة (*) عبارت زیر را به دست می‎دهد:

 

از این معادله، مشتق مقید با توجه به بردار مستقل Z به دست می‎آید:

 

که نمایش دهندة گرادیان محدود (مقید) بردار f وابسته به Z می‎باشد. بنابراین باید در نقاط بحرانی برابر صفر باشد.

شرایط کافی مشابه قسمت قبل می‎باشد. در این حالت با این وجود ماتریس هسیان مطابق با بردار مستقل Z خواهد بود.

 

i امین سطر ماتریس هسیان می‎باشد. توجه کنید که W تابعی از Y و Y تابعی از Z می‎باشد.

بنابراین گرفتن مشتق جزئی نسبت به Zi با استفاده از قاعدة زنجیری انجام می‎گیرد.

مثال: در این مثال می خواهیم چگونگی محاسبة در نقاط داده شده با استفاده از فرمول های گفته شده را نشان دهیم. مطلوب است مطالعة تغییرات در همسایگی قابل قبول .

 



خرید و دانلود تحقیق درمورد روش ژاکوبی برای حل مسائل غیرخطی (رشته ریاضی  کامپیوتر) با فرمت ورد