حریم فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

حریم فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

تحقیق درباره؛ سرب ونحوه جذب و خطرات 21 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 21

 

سرب ، نحوه جذب و خطرات

مروری بر ویژگی‌های سرب

سرب عنصری سنگین، سمی و چکش‌خوار است به رنگ خاکستری کدر که در جدول تناوبی عناصر با نشان Pb و عدد اتمی 82 نمایان می‌شود. هنگامی که تازه تراشیده شده سفید مایل به آبی است اما در معرض هوا به رنگ خاکستری تیره تبدیل می‌شود. سرب سنگین‌ترین عنصر پایدار است.

برخی خواص سرب

خاصیت هدایت الکتریکی سرب پایین است و این فلز به‌شدت در برابر پوسیدگی مقاومت می‌کند و به همین علت از آن برای نگهداری مایعات فرسایشگر (مثل اسید سولفوریک) استفاده می‌شود. همچنین با افزودن مقادیر خیلی کم آنتیموان یا فلزات دیگر به سرب می‌توان آن را سخت کرد. این فلز (در حالت عنصری) پس از آهن، آلومینیوم، مس و روی بیشترین کاربرد را دارد، سرب پس از آهن دومین فلزی است که به‌طور گسترده مورد استفاده قرار گرفته و احتمالا قدیمی‌ترین سم شیمیایی شناخته شده است.

کاربردهای اولیه سرب

استفاده در سازه‌های ساختمانی، رنگدانه‌های مورد استفاده در لعاب سرامیک، لوله‌های انتقال آب، در واسیل تزیینی کاخ‌ها، سقف‌ها و پنجره‌های ساختمان‌های قدیمی، ساچمه و گلوله.

موارد استفاده معمولی سرب

در باتری‌های اسید سرب، در اجزای الکترونیکی، روکش کابل، مهمات، در شیشه‌های CTR، سرامیک، شیشه‌های سرب‌دار، تجهیزات و چاشنی‌های انفجاری در آتشباری معادن، آلیاژها، پیوتر، اتصالات و مواد پرکننده دندان، در بام‌ها به‌عنوان درزگیر برای محافظت اتصالات در برابر باران، در گازوئیل (بنزین) به‌عنوان تترا اتیل و تترا متیل سرب برای کاهش صدای موتور (فروش بنزین سرب‌دار در آمریکا از سال 1986 و در اتحادیه اروپا از سال 1999 ممنوع شد). سرب، به علت فراوانی (هنوز هم این‌گونه است)، تهیه آسان، کار کردن آسان با آن، انعطاف‌پذیری و چکش‌خواری بالا و پالایش راحت، حداقل از 7 هزار سال پیش مورد استفاده بشر است. در اواسط دهه 80 تغییر مهمی در الگوهای پایان استفاده از سرب به‌وجود آمده بود. بیشتر این تغییر ناشی از پیروی مصرف‌کنندگان سرب آمریکا از قوانین زیست‌محیطی بود که به طرز قابل ملاحظه‌ای از سرب را در بسیاری از محصولات از جمله گازوئیل، رنگ، اتصالات و سیستم‌های آبی کاهش داده یا حتی حذف کرد و تنها باتری خودرو از این قافله مستثنا ماند. استفاده از سرب در لوله‌های سربی (اگرچه استفاده از اتصالات سربی در لوله‌های آب آشامیدنی در دهه 90 در آمریکا قانونی شد، امروزه کاربرد آنچنانی ندارند)، استفاده از سرب در رنگ‌ها از سال 1978 در آمریکا و به‌تدریج از دهه 60 تا دهه 80 در انگلستان ممنوع شد اگرچه 50 درصد وزنی رنگ سطوح قدیمی می‌توانست از سرب باشد. سرب محلی در طبیعت یافت می‌شود اما کمیاب است. امروزه معمولا سرب در کانی‌هایی همراه با روی، نقره و مس یافت می‌شود و به همراه این مواد جدا می‌شود. ماده معدنی اصلی سرب، گالن (PbS) است که حاوی 6/87 درصد سرب است. سایر کانی‌های مختلف و معمول آن سروسیت (PbCO3) و انگلسیت (PbSO4) هستند، اما بیش از نیمی از سربی که امروزه مورد استفاده قرار می‌گیرد، بازیافتی است. در اطراف معادن سرب، آلودگی‌ شدید دیده می‌شود که در طول فرآیندهای اکتشاف، استخراج، حمل‌ونقل و فرآوری به‌وجود می‌آید. در مرحله اکتشاف پس از مطالعات زمین‌شناسی، ژئوفیزیکی و ژئوشیمیایی برای نمونه‌برداری و ارزیابی ذخیره، چال‌های اکتشافی حفر می‌شود. پس از اینکه کانسار اقتصادی شناخته شد، سنگ معدن به‌وسیله مته یا انفجار جدا شده سپس آن را خرد کرده و روی زمین قرار می‌دهند. قطعات سنگ بار دامپ تراک شده و به کارخانه فرآوری انتقال داده می‌شوند. بعد از آن سنگ معدن تحت تاثیر فرآیندی قرار می‌گیرد که در قرن نوزدهم در Broken Hill استرالیا به‌وجود آمد. یک فرآیند شناورسازی، سرب و دیگر مواد معدنی را از پس‌مانده‌های سنگ جدا می‌کند تا با عبور سنگ معدن، آب و مواد شیمیایی خاص از تعدادی مخزن که درون آنها دوغاب همیشه مخلوط می‌شود، عصاره‌ای به‌وجود آید. درون این مخزن‌ها هوا جریان یافته و سولفید سرب به حباب‌ها می‌چسبد و به‌صورت کف بالا آمده که می‌توان آن را جدا کرد. این کف (که تقریبا دارای 50 درصد سرب است) خشک شده سپس قبل از پالایش به منظور متولی سرب 97 درصد سنتر می‌شوند. بعد از آن سرب را طی مراحل مختلف سرد کرده تا ناخالصی‌های (ریم) سبک‌تر بالا آمده و آنها را جدا می‌کنند. سرب مذاب با گداختن بیشتر به‌وسیله عبور هوا از روی آن و تشکیل لایه‌ای از تفاله فلز که حاوی تمام ناخالصی‌های باقی مانده است تصفیه شده و سرب خالص 9/99 درصد به‌دست می‌آید. سرب در محیط‌زیست سرب از نظر انتشار گسترده‌ترین عنصر سنگین و سمی در محیط‌زیست است که به‌ویژه از زمان مصرف آن در بنزین از پراکنش بسیار وسیعی در سطح جهان برخوردار است به‌طوری که از یخ‌های قطبی تا رسوبات اعماق دریاها اثرات آن را می‌توان یافت. ترکیبات غیرحلال سرب در سطح زمین جذب رسوبات می‌شوند، گیاهان آبزی نیز سرب را انباشته می‌کنند، اکسیداسیون بیوشیمیایی مواد آلی در غلظت‌های بالای 1/0 میلی‌گرم در لیتر متوقف می‌شود. آب‌های زیرزمینی نیز تحت اثرات ترکیبات محلول سرب (نیترات و کلرید سرب) قرار می‌گیرند. آب‌های آشامیدنی که از لوله‌های سربی عبور می‌کنند، ممکن است حاوی غلظت‌های بالایی از سرب باشند. در جداره‌های داخلی لوله‌های سربی با آب‌های کربناته، رسوب کربنات شکل می‌گیرد. مقادیر عظیمی از سرب توسط فرآیند سوخت وارد جو می‌شود. تفاوت عمده‌ای از نظر غلظت بین نواحی شهری و روستایی وجود دارد. ترکیبات سرب ممکن است تا مسافت قابل‌توجهی منتقل شوند که بستگی به سرعت و جهت باد و میزان بارش و رطوبت دارد. قسمت اعظم سرب موجود در اتمسفر مستقیما رسوب می‌کند یا توسط نزولات خارج می‌شود. سرب به ذرات گرد و غبار چسبیده و بر روی پوشش‌های گیاهی و خاک‌ها می‌نشیند. جذب سرب از طریق تغذیه بیشتر از آشامیدن است. سرب در مناطق آلوده شهری یک مشکل عمده است و تقریبا 30 تا 50 درصد از سرب تنفسی در ریه باقی می‌ماند. مشاغلی که افراد در آنها با سرب سروکار دارند عبارتند از معدنکاری، کابل‌سازی، باتری‌سازی، مونتاژ خودرو، شیشه‌سازی، سفالگری و تعمیرکاری خودرو. مسمومیت ناشی از سرب مواجهه انسان‌ها با سرب از زمان انقلاب صنعتی رو به افزایش بوده است و در قرن اخیر به‌خاطر استفاده از سوخت‌های حاوی سرب شدت گرفته است، به‌طوری که مقدار سرب موجود در بدن انسان‌های امروزی 500 تا 1000 برابر انسان‌های قبل از دوران صنعتی شدن است. سرب از راه‌های مختلف وارد بدن می‌شود. روزانه به‌طور متوسط 8 میکروگرم سرب به‌وسیله استنشاق هوا و 20 میکروگرم توسط غذا وارد بدن می‌شود و افراد معتاد به سیگار نیز حدود 20 تا 30 میکروگرم سرب از طریق مصرف دخانیات دریافت می‌کنند. حدود 7 درصد از سربی که توسط مواد غذایی وارد بدن می‌شود از طریق گوشت است. در شرایطی که سطح خونی سرب بالاتر از 1mcg/L گزارش شود، احتمال مسمومیت با سرب مطرح می‌شود. مسمومیت زمانی ایجاد می‌شود



خرید و دانلود تحقیق درباره؛ سرب ونحوه جذب و خطرات 21 ص


تحقیق درباره؛ سرب ونحوه جذب و خطرات 21 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 21

 

سرب ، نحوه جذب و خطرات

مروری بر ویژگی‌های سرب

سرب عنصری سنگین، سمی و چکش‌خوار است به رنگ خاکستری کدر که در جدول تناوبی عناصر با نشان Pb و عدد اتمی 82 نمایان می‌شود. هنگامی که تازه تراشیده شده سفید مایل به آبی است اما در معرض هوا به رنگ خاکستری تیره تبدیل می‌شود. سرب سنگین‌ترین عنصر پایدار است.

برخی خواص سرب

خاصیت هدایت الکتریکی سرب پایین است و این فلز به‌شدت در برابر پوسیدگی مقاومت می‌کند و به همین علت از آن برای نگهداری مایعات فرسایشگر (مثل اسید سولفوریک) استفاده می‌شود. همچنین با افزودن مقادیر خیلی کم آنتیموان یا فلزات دیگر به سرب می‌توان آن را سخت کرد. این فلز (در حالت عنصری) پس از آهن، آلومینیوم، مس و روی بیشترین کاربرد را دارد، سرب پس از آهن دومین فلزی است که به‌طور گسترده مورد استفاده قرار گرفته و احتمالا قدیمی‌ترین سم شیمیایی شناخته شده است.

کاربردهای اولیه سرب

استفاده در سازه‌های ساختمانی، رنگدانه‌های مورد استفاده در لعاب سرامیک، لوله‌های انتقال آب، در واسیل تزیینی کاخ‌ها، سقف‌ها و پنجره‌های ساختمان‌های قدیمی، ساچمه و گلوله.

موارد استفاده معمولی سرب

در باتری‌های اسید سرب، در اجزای الکترونیکی، روکش کابل، مهمات، در شیشه‌های CTR، سرامیک، شیشه‌های سرب‌دار، تجهیزات و چاشنی‌های انفجاری در آتشباری معادن، آلیاژها، پیوتر، اتصالات و مواد پرکننده دندان، در بام‌ها به‌عنوان درزگیر برای محافظت اتصالات در برابر باران، در گازوئیل (بنزین) به‌عنوان تترا اتیل و تترا متیل سرب برای کاهش صدای موتور (فروش بنزین سرب‌دار در آمریکا از سال 1986 و در اتحادیه اروپا از سال 1999 ممنوع شد). سرب، به علت فراوانی (هنوز هم این‌گونه است)، تهیه آسان، کار کردن آسان با آن، انعطاف‌پذیری و چکش‌خواری بالا و پالایش راحت، حداقل از 7 هزار سال پیش مورد استفاده بشر است. در اواسط دهه 80 تغییر مهمی در الگوهای پایان استفاده از سرب به‌وجود آمده بود. بیشتر این تغییر ناشی از پیروی مصرف‌کنندگان سرب آمریکا از قوانین زیست‌محیطی بود که به طرز قابل ملاحظه‌ای از سرب را در بسیاری از محصولات از جمله گازوئیل، رنگ، اتصالات و سیستم‌های آبی کاهش داده یا حتی حذف کرد و تنها باتری خودرو از این قافله مستثنا ماند. استفاده از سرب در لوله‌های سربی (اگرچه استفاده از اتصالات سربی در لوله‌های آب آشامیدنی در دهه 90 در آمریکا قانونی شد، امروزه کاربرد آنچنانی ندارند)، استفاده از سرب در رنگ‌ها از سال 1978 در آمریکا و به‌تدریج از دهه 60 تا دهه 80 در انگلستان ممنوع شد اگرچه 50 درصد وزنی رنگ سطوح قدیمی می‌توانست از سرب باشد. سرب محلی در طبیعت یافت می‌شود اما کمیاب است. امروزه معمولا سرب در کانی‌هایی همراه با روی، نقره و مس یافت می‌شود و به همراه این مواد جدا می‌شود. ماده معدنی اصلی سرب، گالن (PbS) است که حاوی 6/87 درصد سرب است. سایر کانی‌های مختلف و معمول آن سروسیت (PbCO3) و انگلسیت (PbSO4) هستند، اما بیش از نیمی از سربی که امروزه مورد استفاده قرار می‌گیرد، بازیافتی است. در اطراف معادن سرب، آلودگی‌ شدید دیده می‌شود که در طول فرآیندهای اکتشاف، استخراج، حمل‌ونقل و فرآوری به‌وجود می‌آید. در مرحله اکتشاف پس از مطالعات زمین‌شناسی، ژئوفیزیکی و ژئوشیمیایی برای نمونه‌برداری و ارزیابی ذخیره، چال‌های اکتشافی حفر می‌شود. پس از اینکه کانسار اقتصادی شناخته شد، سنگ معدن به‌وسیله مته یا انفجار جدا شده سپس آن را خرد کرده و روی زمین قرار می‌دهند. قطعات سنگ بار دامپ تراک شده و به کارخانه فرآوری انتقال داده می‌شوند. بعد از آن سنگ معدن تحت تاثیر فرآیندی قرار می‌گیرد که در قرن نوزدهم در Broken Hill استرالیا به‌وجود آمد. یک فرآیند شناورسازی، سرب و دیگر مواد معدنی را از پس‌مانده‌های سنگ جدا می‌کند تا با عبور سنگ معدن، آب و مواد شیمیایی خاص از تعدادی مخزن که درون آنها دوغاب همیشه مخلوط می‌شود، عصاره‌ای به‌وجود آید. درون این مخزن‌ها هوا جریان یافته و سولفید سرب به حباب‌ها می‌چسبد و به‌صورت کف بالا آمده که می‌توان آن را جدا کرد. این کف (که تقریبا دارای 50 درصد سرب است) خشک شده سپس قبل از پالایش به منظور متولی سرب 97 درصد سنتر می‌شوند. بعد از آن سرب را طی مراحل مختلف سرد کرده تا ناخالصی‌های (ریم) سبک‌تر بالا آمده و آنها را جدا می‌کنند. سرب مذاب با گداختن بیشتر به‌وسیله عبور هوا از روی آن و تشکیل لایه‌ای از تفاله فلز که حاوی تمام ناخالصی‌های باقی مانده است تصفیه شده و سرب خالص 9/99 درصد به‌دست می‌آید. سرب در محیط‌زیست سرب از نظر انتشار گسترده‌ترین عنصر سنگین و سمی در محیط‌زیست است که به‌ویژه از زمان مصرف آن در بنزین از پراکنش بسیار وسیعی در سطح جهان برخوردار است به‌طوری که از یخ‌های قطبی تا رسوبات اعماق دریاها اثرات آن را می‌توان یافت. ترکیبات غیرحلال سرب در سطح زمین جذب رسوبات می‌شوند، گیاهان آبزی نیز سرب را انباشته می‌کنند، اکسیداسیون بیوشیمیایی مواد آلی در غلظت‌های بالای 1/0 میلی‌گرم در لیتر متوقف می‌شود. آب‌های زیرزمینی نیز تحت اثرات ترکیبات محلول سرب (نیترات و کلرید سرب) قرار می‌گیرند. آب‌های آشامیدنی که از لوله‌های سربی عبور می‌کنند، ممکن است حاوی غلظت‌های بالایی از سرب باشند. در جداره‌های داخلی لوله‌های سربی با آب‌های کربناته، رسوب کربنات شکل می‌گیرد. مقادیر عظیمی از سرب توسط فرآیند سوخت وارد جو می‌شود. تفاوت عمده‌ای از نظر غلظت بین نواحی شهری و روستایی وجود دارد. ترکیبات سرب ممکن است تا مسافت قابل‌توجهی منتقل شوند که بستگی به سرعت و جهت باد و میزان بارش و رطوبت دارد. قسمت اعظم سرب موجود در اتمسفر مستقیما رسوب می‌کند یا توسط نزولات خارج می‌شود. سرب به ذرات گرد و غبار چسبیده و بر روی پوشش‌های گیاهی و خاک‌ها می‌نشیند. جذب سرب از طریق تغذیه بیشتر از آشامیدن است. سرب در مناطق آلوده شهری یک مشکل عمده است و تقریبا 30 تا 50 درصد از سرب تنفسی در ریه باقی می‌ماند. مشاغلی که افراد در آنها با سرب سروکار دارند عبارتند از معدنکاری، کابل‌سازی، باتری‌سازی، مونتاژ خودرو، شیشه‌سازی، سفالگری و تعمیرکاری خودرو. مسمومیت ناشی از سرب مواجهه انسان‌ها با سرب از زمان انقلاب صنعتی رو به افزایش بوده است و در قرن اخیر به‌خاطر استفاده از سوخت‌های حاوی سرب شدت گرفته است، به‌طوری که مقدار سرب موجود در بدن انسان‌های امروزی 500 تا 1000 برابر انسان‌های قبل از دوران صنعتی شدن است. سرب از راه‌های مختلف وارد بدن می‌شود. روزانه به‌طور متوسط 8 میکروگرم سرب به‌وسیله استنشاق هوا و 20 میکروگرم توسط غذا وارد بدن می‌شود و افراد معتاد به سیگار نیز حدود 20 تا 30 میکروگرم سرب از طریق مصرف دخانیات دریافت می‌کنند. حدود 7 درصد از سربی که توسط مواد غذایی وارد بدن می‌شود از طریق گوشت است. در شرایطی که سطح خونی سرب بالاتر از 1mcg/L گزارش شود، احتمال مسمومیت با سرب مطرح می‌شود. مسمومیت زمانی ایجاد می‌شود



خرید و دانلود تحقیق درباره؛ سرب ونحوه جذب و خطرات 21 ص


تحقیق در مورد جذب فسفر توسط گیاهان

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 15 صفحه

 قسمتی از متن .doc : 

 

جذب فسفر توسط گیاهان:از خاک تا سلول

مقدمه

P یک عنصر غذایی مهم در گیاهان است که حدود 2/0 درصد از وزن خشک گیاه را تشکیل می دهد. P یک جزء مولکولهای کلیدی مانند اسیدهای نوکلئیک، فسفولیپیدها و ATP است و در نتیجه گیاهان بدون مقدار کافی از این ماده غذایی نمی توانند رشد کنند. P همچنین در کنترل و اکنشهای آنزیمی کلیدی و در تنظیم مسیرهای متابولیسمی نقش دارد.

بعد از N ، P دومین عنصر غذایی پر مصرف محدود کننده برای رشد گیاه است. این مقاله درباره P در خاک و جذب آن توسط گیاهان، انتقال از میان غشاهای سلولی، تقسیم بندی و بازپراکنی در داخل گیاه تمرکز می کند. ار بر روی P در گیاهان عالیتر متمرکز می شویم در حالیکه مکانیسم های تشابهی نشان داده شده اند که در جلبکها و قارچها بکار می روند.

فسفر در خاک

اگر چه مقدار کل P در خاک ممکن است زیاد باشد، اما اغلب به فرمهای غیر قابل استفاده یا به فرمهایی که فقط در خارج از ریزوسفر قابل استفاده است وجود دارد. در بسیاری از سیستم های کشاورزی که در آنها کاربرد P در خاک برای تضمین محصول زیاد گیاه ضروری است، بازیافت P بکار برده شده بوسیله گیاهان درفصل رویش بسیار پایین است، زیرا در خاک بیش از 80 درصد از P بخاطر جذب سطحی، بارندگی یا تبدیل شدن به فرم آلی تثبیت شده و قابل جذب توسط گیاها نخواهد بود.

P در خاک به شکلهای مختلفی مانند P آلی و معدنی یافت می شود(شکل1). مهم است تاکید شود که 20 تا 80 درصد از P در خاکها به فرم آلی یافت می شود، که از آن فیتیک اسید(اینوریتول هگزافسفات) معمولا جزء اصلی است. باقیمانده در بخش معدنی که شامل 170 فرم معدنی از P است یافت می شود. میکروبهای خاک فرمهای بی حرکت P را به محلول خاک آزاد می کنند و همچنین مسئول توقف تحرک P هستند. مقدار کم P موجود در خاک جذب آن توسط گیاه را محدود می کند. بیشتر مواد معدنی محلول مانند K در خاک از طریق جریان توده ای و انتشار حرکت می کنند اما P عمدتا بوسیله انتشار حرکت می کند. از آنجا که سرعت انتشار P پایین است( تا متر مربع بر ثانیه)، سرعت جذب توسط گیاهان ناحیه8 ای در اطراف ریشه بوجود مس اورد که خالی از P است.

مورفولوژی ریشه گیاه برای افزایش جذب P اهمیت دارد زیرا ساختارهای ریشه ای که نسبته سطح به حجم بیشتری دارند(سطح تماس بیشتری با خاک داشته و دسترسی به منابع غذای خاک دارند.) به این دلیل میکرویزاها برای کسب P توسط گیاه اهمیت دارند زیرا ریسه های قارچی مقدار خاکی که ریشه های گیاهان جستجو می کنند، سطح تماس ریشه های گیاهان با خاک را افزایش دهند. در گونه های گیاهی خاص، دسته های رشیه ای(ریشه های پروتئوئید) در واکنش به محدودیت P شکل گرفته اند. این ریشه های تخصص یافته مقادیر زیادی از اسیدهای آلی(تا 23 درصد از فتوسنتز خالص) تراوش می کنند که خاک را اسیدی کرده و یونهای فلزی اطراف ریشه ها را شلات می کنند که منجر به آماده سازی(تحریک) P و تعدادی از ریز مغذی ها می شوند.

جذب P از میان غشای پلاسمایی و تونوپلاست

جذب P یک مشکل برای گیاهان مطرح می کند، زیرا غلظت این ماده معدنی در محلول خاک پاین است اما نیاز گیاه بالاست. شکلی زا P که به آسانی توطس گیاهان دریافت می شود Pi است که غلظت آن به ندرت از 10 میکرومول در محلولهای خاک تجاوز می کند. بنابرانی گیاهان باید ناقلین خاصی در مرز ریشه / خاکم برای اخذ Pi از محلولهای با غلظت میکرومولار داشته باشند، علاوه بر مکانیسم های دیگر برای انتقال Pi از میان غشاهای بین بخشهای درون سلولی، جایی که غلظت Pi ممکن است 1000 مرتبه بیشتر از محلول خارجی باشد. همچنین باید یک سیستم برون ریزش وجود داشته باشد که در باز پراکنی این منبع گرانبها زمانی که P خاک دیگر در دسترس و یا کافی نیست، نقش ایفا کند.

شکلی که Pi در محلول وجود دارد نسبت به PH تغییر می کند. PK ها برای تفکیک H3PO4 به H2PO4 به به ترتیب 1/2 و 2/7 است. بنابراین در PH زیر 6، بیشتر Pi بصورت انواع مونووالان وجود خواهد داشت، در حالیکه H3PO4 و فقط به نسبت های جزئی وجود خواهند داشت. بیشتر مطالعات بر روی جذب Pi وابسته به PH در گیاهان عالیتر نشان داده اند که میزان جذب در PH بین 5 و6 جایی که غالبیت دارد، بیشترین است، که پیشنهاد می کند که Pi به فرم مونووالان جذب می شود.

تحت شرایط فیزیولوژیک طبیعی یک نیاز برای انتقال پر انرژی Pi از میان غشاهای پلاسمایی از خاک به گیاه وجود دارد بخاطر غلظت نسبتا بالای Pi در سیتوپلاسم و پتانسیل غشایی منفی که ویژگی سلولهای گیاهی است. این نیاز یه انرژی برای جذب Pi بوسیله اثرات مهار کننده های متابولیک که جذب Pi را به سرعت کاهش می دهند اثبات شده است. مکانیکهای دقیق انتقال غشایی هنوز روشن نشده، اگر چه کوترسپورت Pi با یک یا چند پروتون بهترین انتخاب بر مبنای مشاهدات زیر است.

افزودن Pi به ریشه های گرسنه منتهی به دپلاریزاسیون غشای پلاسمای و اسیدی شدن سیتوپلاسم می شود. دپلاریزاسیون نشان می دهد که Pi به آسانی بصورت و یا وارد نمی شود، هر دوی آنها منجر به هیپر پلاریزاسیون غشا می شوند. از این نتایج احتمال می رود که Pi با یونهای با شارژ مثبت کوتر سپورت می شود. کوترسپورت Pi با یک



خرید و دانلود تحقیق در مورد جذب فسفر توسط گیاهان


تحقیق در مورد جذب فسفر توسط گیاهان

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 15 صفحه

 قسمتی از متن .doc : 

 

جذب فسفر توسط گیاهان:از خاک تا سلول

مقدمه

P یک عنصر غذایی مهم در گیاهان است که حدود 2/0 درصد از وزن خشک گیاه را تشکیل می دهد. P یک جزء مولکولهای کلیدی مانند اسیدهای نوکلئیک، فسفولیپیدها و ATP است و در نتیجه گیاهان بدون مقدار کافی از این ماده غذایی نمی توانند رشد کنند. P همچنین در کنترل و اکنشهای آنزیمی کلیدی و در تنظیم مسیرهای متابولیسمی نقش دارد.

بعد از N ، P دومین عنصر غذایی پر مصرف محدود کننده برای رشد گیاه است. این مقاله درباره P در خاک و جذب آن توسط گیاهان، انتقال از میان غشاهای سلولی، تقسیم بندی و بازپراکنی در داخل گیاه تمرکز می کند. ار بر روی P در گیاهان عالیتر متمرکز می شویم در حالیکه مکانیسم های تشابهی نشان داده شده اند که در جلبکها و قارچها بکار می روند.

فسفر در خاک

اگر چه مقدار کل P در خاک ممکن است زیاد باشد، اما اغلب به فرمهای غیر قابل استفاده یا به فرمهایی که فقط در خارج از ریزوسفر قابل استفاده است وجود دارد. در بسیاری از سیستم های کشاورزی که در آنها کاربرد P در خاک برای تضمین محصول زیاد گیاه ضروری است، بازیافت P بکار برده شده بوسیله گیاهان درفصل رویش بسیار پایین است، زیرا در خاک بیش از 80 درصد از P بخاطر جذب سطحی، بارندگی یا تبدیل شدن به فرم آلی تثبیت شده و قابل جذب توسط گیاها نخواهد بود.

P در خاک به شکلهای مختلفی مانند P آلی و معدنی یافت می شود(شکل1). مهم است تاکید شود که 20 تا 80 درصد از P در خاکها به فرم آلی یافت می شود، که از آن فیتیک اسید(اینوریتول هگزافسفات) معمولا جزء اصلی است. باقیمانده در بخش معدنی که شامل 170 فرم معدنی از P است یافت می شود. میکروبهای خاک فرمهای بی حرکت P را به محلول خاک آزاد می کنند و همچنین مسئول توقف تحرک P هستند. مقدار کم P موجود در خاک جذب آن توسط گیاه را محدود می کند. بیشتر مواد معدنی محلول مانند K در خاک از طریق جریان توده ای و انتشار حرکت می کنند اما P عمدتا بوسیله انتشار حرکت می کند. از آنجا که سرعت انتشار P پایین است( تا متر مربع بر ثانیه)، سرعت جذب توسط گیاهان ناحیه8 ای در اطراف ریشه بوجود مس اورد که خالی از P است.

مورفولوژی ریشه گیاه برای افزایش جذب P اهمیت دارد زیرا ساختارهای ریشه ای که نسبته سطح به حجم بیشتری دارند(سطح تماس بیشتری با خاک داشته و دسترسی به منابع غذای خاک دارند.) به این دلیل میکرویزاها برای کسب P توسط گیاه اهمیت دارند زیرا ریسه های قارچی مقدار خاکی که ریشه های گیاهان جستجو می کنند، سطح تماس ریشه های گیاهان با خاک را افزایش دهند. در گونه های گیاهی خاص، دسته های رشیه ای(ریشه های پروتئوئید) در واکنش به محدودیت P شکل گرفته اند. این ریشه های تخصص یافته مقادیر زیادی از اسیدهای آلی(تا 23 درصد از فتوسنتز خالص) تراوش می کنند که خاک را اسیدی کرده و یونهای فلزی اطراف ریشه ها را شلات می کنند که منجر به آماده سازی(تحریک) P و تعدادی از ریز مغذی ها می شوند.

جذب P از میان غشای پلاسمایی و تونوپلاست

جذب P یک مشکل برای گیاهان مطرح می کند، زیرا غلظت این ماده معدنی در محلول خاک پاین است اما نیاز گیاه بالاست. شکلی زا P که به آسانی توطس گیاهان دریافت می شود Pi است که غلظت آن به ندرت از 10 میکرومول در محلولهای خاک تجاوز می کند. بنابرانی گیاهان باید ناقلین خاصی در مرز ریشه / خاکم برای اخذ Pi از محلولهای با غلظت میکرومولار داشته باشند، علاوه بر مکانیسم های دیگر برای انتقال Pi از میان غشاهای بین بخشهای درون سلولی، جایی که غلظت Pi ممکن است 1000 مرتبه بیشتر از محلول خارجی باشد. همچنین باید یک سیستم برون ریزش وجود داشته باشد که در باز پراکنی این منبع گرانبها زمانی که P خاک دیگر در دسترس و یا کافی نیست، نقش ایفا کند.

شکلی که Pi در محلول وجود دارد نسبت به PH تغییر می کند. PK ها برای تفکیک H3PO4 به H2PO4 به به ترتیب 1/2 و 2/7 است. بنابراین در PH زیر 6، بیشتر Pi بصورت انواع مونووالان وجود خواهد داشت، در حالیکه H3PO4 و فقط به نسبت های جزئی وجود خواهند داشت. بیشتر مطالعات بر روی جذب Pi وابسته به PH در گیاهان عالیتر نشان داده اند که میزان جذب در PH بین 5 و6 جایی که غالبیت دارد، بیشترین است، که پیشنهاد می کند که Pi به فرم مونووالان جذب می شود.

تحت شرایط فیزیولوژیک طبیعی یک نیاز برای انتقال پر انرژی Pi از میان غشاهای پلاسمایی از خاک به گیاه وجود دارد بخاطر غلظت نسبتا بالای Pi در سیتوپلاسم و پتانسیل غشایی منفی که ویژگی سلولهای گیاهی است. این نیاز یه انرژی برای جذب Pi بوسیله اثرات مهار کننده های متابولیک که جذب Pi را به سرعت کاهش می دهند اثبات شده است. مکانیکهای دقیق انتقال غشایی هنوز روشن نشده، اگر چه کوترسپورت Pi با یک یا چند پروتون بهترین انتخاب بر مبنای مشاهدات زیر است.

افزودن Pi به ریشه های گرسنه منتهی به دپلاریزاسیون غشای پلاسمای و اسیدی شدن سیتوپلاسم می شود. دپلاریزاسیون نشان می دهد که Pi به آسانی بصورت و یا وارد نمی شود، هر دوی آنها منجر به هیپر پلاریزاسیون غشا می شوند. از این نتایج احتمال می رود که Pi با یونهای با شارژ مثبت کوتر سپورت می شود. کوترسپورت Pi با یک



خرید و دانلود تحقیق در مورد جذب فسفر توسط گیاهان


تحقیق درمورد دستگاههای جذب اتمی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 6

 

دستگاههای جذب اتمی

اساس جذب اتمی بر روی تابش و جذب اتم های خنثی در درجه حرارتی پایین تر از طیف تابشی یعنی 2000 درجه سلسیوس می باشد.برای سنجش در این روش نمونه ها باید بصورت محلول باشد. در اولین قدم آزمایش محلول حاوی عنصر بوسیله یک شعله که با هوا و استلین میسوزد در 2000 درجه سلسیوس بخار می شود. در اثر بخار شدن قسمت اعظم عناصر موجود در محلول به حالت خنثی در می آید این درست بر عکس طیف سنج تابشی است که فقط 5% عناصر بصورت یونی در می آید. بعد از بخار شدن ، اتم های خنثی شده توسط لامپ کاتدی(لامپ مخصوص برای هر عنصر) جذب می شود. در این حالت شدت اشعه تابش اولیه کمتر می شود. تفاوت شدت دو شعاع برابر با عیار عناصر موجود در محلول است.

AAS شامل 2 نوع تک پرتوی و دو پرتوی می باشد . اجزاء AAS به طور خلاصه شامل منابع تابش آن که برای طیف نورسنج های جذب اتمی معمولاً لامپ های کاتدی توخالی و لوله های تخلیه ای گاز می باشد . تکفامساز ها و صافی ها، آشکارسازها و شناگرها از اجزاء این دستگاه هستند .

دستگاه جذب اتمی شعله ای

در این دستگاه ، به منظور تبخیر محلول و تفکیک نمونه به اتم های سازنده از هوا / استیلن و یا اکسید نیتروز / استیلن استفاده می شود .

هنگامی که نور از یک لامپ کاتدی از درون ابری از اتم ها عبور می کند . اتم های مورد بررسی ، نور ساطع شده از لامپ را جذب می کنند و لذا توسط ردیاب اندازه گیری شده و تمرکز عنصر مورد نظر در نمونه ، مشخص می گردد .

استفاده از شعله ، دمای رسیده به نمونه را تقریباً تا 2600 درجه سانتی گراد ( در N2O / استیلن ) محدود می کند که این مطلب در زمینه بررسی بسیاری از عناصر ، مشکلی را ایجاد نمی کند .

به عنوان مثال ، در بررسی فلزات آلکانی و بسیاری از فلزات سنگین مثل سرب یا کادمیوم و فلزات واسطه مثل منگنز یا نیکل به کارگیری F-AAS امکان اتمیزه کردن با کیفیت بالا و تا حد ppm را فراهم می کند .

معایب

اما این روش جهت بررسی برخی دیگر از عناصر مانند : B , Mo , Zr , V که برای شکسته شدن نیاز به دمایی بالاتر از حد فوق دارند ، کارآمد نمی باشد . در نهایت می توان گفت این ابزار در زمینه بررسی عناصر ، به میزان سایر تکنیک های مورد استفاده کارآیی ندارد .

دستگاه جذب اتمی WFX-1E3

دستگاه جذب اتمی مجهز به لامپهای :‌Hg, Mn, Sb, Zn, Pb, Au, Cu, Cd, Bi, Ag, As پتانسیل بالفعل دستگاه اندازه گیری عناصر فوق در نمونه های جامد و مایع می باشد.

دستگاه جذب اتمی شعله ای 650

در این دستگاه ، به منظور تبخیر محلول و تفکیک نمونه به اتم های سازنده از هوا / استیلن و یا اکسید نیتروز / استیلن استفاده می شود .

هنگامی که نور از یک لامپ کاتدی از درون ابری از اتم ها عبور می کند . اتم های مورد بررسی ، نور ساطع شده از لامپ را جذب می کنند و لذا توسط ردیاب اندازه گیری شده و تمرکز عنصر مورد نظر در نمونه ، مشخص می گردد .

استفاده از شعله ، دمای رسیده به نمونه را تقریباً تا 2600 درجه سانتی گراد ( در N2O / استیلن ) محدود می کند که این مطلب در زمینه بررسی بسیاری از عناصر ، مشکلی را ایجاد نمی کند .

به عنوان مثال ، در بررسی فلزات آلکانی و بسیاری از فلزات سنگین مثل سرب یا کادمیوم و فلزات واسطه مثل منگنز یا نیکل به کارگیری F-AAS امکان اتمیزه کردن با کیفیت بالا و تا حد ppm را فراهم می کند .

معایب

اما این روش جهت بررسی برخی دیگر از عناصر مانند : B , Mo , Zr , V که برای شکسته شدن نیاز به دمایی بالاتر از حد فوق دارند ، کارآمد نمی باشد . در نهایت می توان گفت این ابزار در زمینه بررسی عناصر ، به میزان سایر تکنیک های مورد استفاده کارآیی ندارد .

دستگاه جذب اتمی 2100

عناصر Ag-Au-Bi-Cd-Co-Cr-Cu-Fe-Mg-Ni-Pb-Sb-Zn در مواد معدنی ، آبها ، فلزات و فرآورده های بیولوژیکی و غذایی توسط این دستگاه اندازه گیری می شوند .

زمینه های کاربردی دستگاه جذب اتمی :

- اندازه گیری فلزات در مقیاس PPM در انواع حلال های آلی و معدنی

- اندازه گیری عناصر میکرو در عصاره های خاک و گیاه ،خون و سایر مواد معدنی آلی توسط جذب اتمی

- اندازه گیری فلزات خاص در پلاسمای خون بیماران

طیف‌بینی جذب اتمی

استفاده عمومیآنالیز کمی حدوداً هفتاد عنصر.

موارد کاربردآنالیز ناخالصی‌های ناچیز در آلیاژها و معرف‌های مورد استفاده در پروسه تولید.



خرید و دانلود تحقیق درمورد دستگاههای جذب اتمی