لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 5
روش های تولید سیگنال الکتروکاردیوگرام (ECG)
در سال های اخیر توجه زیادی به تولید مصنوعی سیگنال های الکتروکاردیوگرام( (ECGبه کمک مدل های ریاضی معطوف شده است . یکی از کاربردهای مدل های دینامیکی که سیگنال های ECG مصنوعی تولید می کند، ارزیابی آسان دستگاه های پردازش سیگنال تشخیصی ECGاست.
همچنین باید مدل از توانایی لازم برای تولید سیگنال های ECG طبیعی و غیر طبیعی برخوردار باشد.اختلاف پتانسیل ثبت شده بین دو الکترود که روی سطح پوست قرارداده شده اند، به الکتروکاردیوگرام (ECG) سطحی معروف است . دی پلاریزاسیون/ ری پلاریزاسیون های دهلیزی و بطنی متوالی که در هر دوره قلبی اتفاق می افتد قله و دره هایی در یک سیکل منفرد سیگنال ECG طبیعی ایجاد می کند . این قله ها و دره ها با حروف T,S,R,Q,P نام گذاری می شوند.تنوع ضربان - ضربان در RR داخلی ، تنوع درمحدوده مقیاس زمانی از ثانیه تا روز است بعضی از این تغییرات به خوبی قابل درک هستند و برگرفته از :
/
شکل 1- اتصال سیستم عصبی به قلب
1- حمله قلبی بین مکانیزم کنترل متفاوت فیزیولوژی از قبیل آریتمی سینوس تنفسی (RSA) و موج های مایراست. 2- میزان فعالیت فیزیکی و ذهنی3- ریتم circadian 4- اثرات مراحل مختلف خوابانتشار ضربان قلب از گره سینوسی - دهلیزی به دهلیزها و سپس به دسته دهلیزی بطنی هیس و سرانجام به بطن ها همراه با تغییرات پتانسیل الکتریکی است که می توان آن را در فاصله ای دورتر از قلب ثبت کرد. منحنی تغییرات الکتریکی قلب را الکتروکاردیوگرام یا به اختصار ECG می نامند .سیستم اعصاب مرکزی (ANS) مسئول تنظیم کوتاه مدت فشار خون است . ANS، قسمتی از سیستم اعصاب مرکزی (CNS) است. ANS از دو زیر سیستم سمپاتیک و پاراسمپاتیک استفاده می کند. سیستم سمپاتیک در شرایط استرس فعال می شود تا نرخ ضربان قلب را بالا ببرد . سیستم سمپاتیک می تواند نرخ ضربان قلب را تا 180 ضربان دردقیقه (bpm) بالا ببرد .فیبر های عصبی سمپاتیک تمام قلب از جمله گره سینوسی - دهلیزی ، گره دهلیزی - بطنی ، مسیر های هدایتی و عضلات دهلیزی و بطنی را تحت تاثیر قرار می دهد. با افزایش فعالیت سمپاتیک نرخ ضربان قلب و نیروی انقباضی افزایش می یابد. به علاوه میزان هدایت قلب افزایش و مدت انقباض آن کاهش می یابد. در مقابل ، سیستم پاراسمپاتیک در زمان استراحت فعال می شود و می تواند نرخ ضربان قلب را تا bpm 60 پایین بیاورد. سیستم پاراسمپاتیک مسیر های هدایت دهلیزی - بطنی و عضلات دهلیزی را تحت تأثیر قرار می دهد.
روش های مختلفی برای تولید سیگنال وجود دارد که می توان به دو بخش عمده خطی و غیر خطی تقسیم کرد.
/
شکل2- مسیر حرکت نمونه تولید شده توسط مدل Mc sharry
چند نمونه از روش های غیر خطی به صورت ذیل است:
روش MC sharry ، شبکه عصبی، IPFM ، مدل دینامیکی، مدل zeeman، مدل ترکیبی GCM و از روش های خطی نیز می توان به روش های پارامتری مانند مدل های AR,ARMA, نام برد.مدل McSharry یک سیکل جدی در فضای سه بعدی (x,Y,Z) ایجاد می کند به طوری که هر حرکت کامل روی آن متناظر با یک سیکل قلبی در نظر گرفته می شود. تصویر مسیر حرکت روی صفحه x-y یک دایره است. تصویر این حرکت روی محور z ، سیگنال ECG را فراهم می کند. در مدلIPFM از ورودی انتگرال گرفته می شود تا هنگامی که حاصل انتگرال به سطح آستانه ای برابر TH برسد، در این زمان پالسی به عنوان ضربان قلب می شود. سطح آستانه Th را می توان با یک توزیع تصادفی گوسی انتخاب کرد. ورودی انتگراتور مجموع دو سیگنال است . یکی m(t) که بیانگر فعالیت اعصاب سمپاتیک و پاراسمپاتیک است و دیگری که به عنوان یک ورودی داخلی برای گره SA در نظر گرفته می شود. هنگامی که m(t) برابر صفر باشد ، پالس های تولید شده دارای فرکانس متناسب با خواهد بود. البته باید توجه کرد که باید همواره مثبت باشد. بلوک دیاگرام مدل ارائه شده برای تولید HRV توسط IPFM به صورت روبه رواست.در مدل غیر خطی از مبنای شبکه های عصبی برای تولید سیگنال الکتروکاردیوگرام همراه با شبکه عصبی با توابع شعاعی (RBF) در یک مدل دینامیکی غیر خطی که بر پایه مدل دینامیکی Mc Sharry و همکاران بنا شده است استفاده شده که ، روش مناسبی برای تولید مصنوعی سیگنال های الکتروکاردیوگرام است.
/
شکل3- بلوک دیاگرام مدل IPFM
درروش مدل zeeman یک مدل جبرانی برای تولید سیگنال ECG مصنوعی مطرح شده است . این مدل اثر آریتمی سینوسی تنفسی ، موج های مایر از همه مهم تر مولفه فرکانس پایین در طیف توان HRV را دخالت داده است . در مدل ، اثرات فعالیت های سمپاتیک و پاراسمپاتیک در مولفه های LF , HF , VLF در طیف توان HRV شامل می شود . درروش تولید سیگنال ECG با استفاده از مدل ترکیبی گوسین (GCM) برای تولید الکترو کاردیو گرام (ECG) مولد سیگنال ویژگی های مورفولوژی ECG را در اطراف نقاط اکسترمم بیان می کند. دو روش برای تعداد شناسه های گوسین وجود دارد:1 روش دستی : اپراتور تعداد گوسین ها را در این مدل پیشنهاد می کند .2 روش اتوماتیک : تعداد گوسین ها به طور اتوماتیک شناسایی شده و بر پایه خطای نهایی مطلوب است. در تولید ECG با استفاده از روش GCM باید تطبیقی بین صحت و زمان اجرا شدن وجود داشته باشد. نتایج تطبیق در این روش به تعداد گوسین ها بستگی دارد.HRV به عنوان یکی از مهم ترین راه ها برای در نظر گرفتن سیستم قلبی - عروقی و کنترل آن است. HRV به ضربان - ضربان نرخ قلب به عنوان استخراج از ضربان های پیوسته زمان داخلی ، RR داخلی و حدود مقدار میانگین (HR - RR)است.طبقه بندی سری زمانی یکی از مسائلی است که کاربرد وسیعی در زمینه های متنوع دارد و اخیراً مورد توجه بسیاری از محققان بوده است. تحقیق های اخیر برروی طبقه بندی داده های استخراجی از مدل های ARMA با استفاده از الگوریتم های K-means و K-medoids با فاصله اقلیدسی بین پارامترهای تخمینی مدل، تمرکز شده است. در این تحقیقات ثابت شده که طبقه بندی به وسیله دیتای برش خورده، مزایای زیر را به دنبال خواهد داشت:
/
شکل4- بلوک دیاگرام مدل ارائه شده برای تولید HRV توسط IPF
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 4 صفحه
قسمتی از متن .doc :
مبدلهای حرارتی
مبدلهای حرارتی، دستگاههایی هستند که به کمک آنها میتوان در اثر تماس غیرمستقیم دو سیال، سیالی را سرد یا گرم کرد. در مورد این که کدام یک از دو سیال داخل لوله و کدام یک خارج لوله و در پوسته جریان داشته باشد، میتوان معیارهای زیر را مدنظر قرار داد.
بهتر است سیال با ظرفیت حرارتی بیشتر در لوله داخلی و سیال با ظرفیت کمتر در لوله خارجی باشد، چون با نصب ظرفیت فین (پره) در لوله خارجی میتوان ضریب کلی انتقال حرارت (U) را افزایش داد.
سیال خورنده در لوله داخلی جریان داشته باشد تا در اثر نشت احتمالی به محیط نشت نکند.
بهتر است فاز سمی در لوله داخلی جریان داشته باشد تا در اثر نشت احتمالی به محیط نشت نکند.
سیالی که دمای آن به دمای محیط نزدیکتر است، در لوله خارجی باشد.
سیالی که تمایل به رسوبگذاری بیشتری دارد در لوله خارجی باشد.
مطابق شکل 1-1، برای محاسبه انتقال حرارت بین دو سیال میتوان از روابط زیر استفاده نمود:
qA = mA cPA (T2 – T1)A
qB = mB cPB (T1 – T2)B
q = AU∆TLn
AU = AoUo = AiUi
= LMTD
که در این رابطه، U ضریب کلی انتقال حرارت، Ui ضریب کلی انتقال حرارت مربوط به سطح داخلی و ∆Tln متوسط لگاریتمی اختلاف دما (Log Mean Temperature Difference) میباشد.
شکل 1-1 مبدل حرارتی دو لولهای و مدار الکتریکی مشابه آن
آرایش مختلف جریانها در مبدلهای حرارتی در شکل 1-2 آورده شده است. در این شکل، محور افقی تمام حالتها معرف طول مبدل میباشد.
در مورد تبخیرکنننده حالت (و) میتوان گفت که جریان با دمای بالاتر انرژی خود را به جریان خنکتر میدهد و باعث به جوش آوردن جریان با درجه حرارت پایین در درجه حرارت ثابت میشود، بهطور مشابه در حالت (د) این وضعیت برقرار است.
برای داشتن سرعت بیشتر، لولههای کوتاهتر و کاهش مشکل انبساط از مبدلهای چند مسیره استفاده میشود.
شکل 1-2 آرایش مختلف جریانها در مبدلهای حرارتی
همانطور که قبلاً اشاره شد، رابطه بالا برای مبدلهای حرارتی دو لولهای صادق است، ولی اگر مبدل به صورتهای دیگر (مبدل با یک پوسته و با مضربی از دو مسیر لوله، با دو پوسته و با مضربی از چهار مسیر لوله، مبدل حرارتی با جریان عمود بر هم یک مسیره که هر دو سیال غیرمخلوط هستند و ...) باشد مقدار گرمای انتقال یافته از رابطه زیر به دست میآید.
q = AUF∆Tln
که F ضریب تصحیح بوده و مقدار F برای انواع مختلفی از دیاگرامهای مربوط به دست میآید. طراحی مبدل (محاسبه سطح مبدل) در صورت منوط به انجام حدس و خطاست، ولی با تعریف کارایی مبدل حرارتی، این طراحی آسانتر صورت میگیرد. این روش که ناسلت آن را پایهگذاری کرد به نام روش تعداد واحدهای انتقال (N.T.U یا Number of Transfer Unit) معروف است. در ادامه به طور خلاصه به این روش پرداخته میشود:
انتقال حرارت واقعی
= کارایی مبدل حرارتی =
ماکزیمم انتقال حرارت
با توجه به اینکه q = CH(THi – Tho) = CC(TCo – Tci) (توجه شود که C=m.c که c ظرفیت حرارتی است). به راحتی میتوان دریافت که هر جریان که دارای بیشتری اختلاف دما باشد، باید کمترین C را نیز داشته باشد. یعنی:
Cc > Cmin یا CH > CC ( ∆Tc > ∆TH (1 اگر
CH > Cmin یا CC > CH ( ∆TH > ∆Tc (2 اگر
چون در تعریف کارآیی، برای ماکزیمم انتقال حرارت (مخرج تعریف) سطح مبدل را بینهایت تصور میکنیم. پس دمای خروجی جریان سرد (در حالت CH > CC) میتواند به دمای ورودی جریان گرم برسد (بهطور مشابه دمای خروجی جریان گرم در حالت CH
شکل 1-3 توزیع دما در مبدل مختلف جریان سرد بیشترین اختلاف دما را دارد.
اهمیت این رابطه در طراحی این است که فقط احتیاج به دانستن دماهای ورودی جریان گرم و سرد است، البته به شرط آن که کارایی مبدل حرارتی () معلوم باشد.
محاسبات ریاضی نشان داده است که کارآیی مبدلها فقط تابعی از نسبتهای میباشد که U ضریب کلی انتقال حرارت و A سطح مبدل حرارتی است، دو حالت بسیار ساده زیر موید این مطلب است:
در صورتی که در مبدل مختلف الجهت C=1 باشد، داریم:
در صورتی که کندانسور و یا تبخیرکننده داشته باشیم، ملاحظه شد که دمای یک جریان ثابت میماند، در مورد این جریان C = 0 or Cmax ( ∞
در ضمن هرچه NTU بیشتر شود، کارایی مبدل بیشتر میشود، به شرط آن که در مورد مبدلهای همجهت مقدار NTU از سه و در مبدلهای مختلفالجهت مقدار NTU از 5 بیشتر نباشد. کاهش نسبت نیز بر افزایش کارایی مبدل اثر دارد، ولی این کاهشِ نسبت نمیتواند تا صفر شدن دبی یکی از جریانها ادامه یابد، چرا که در این صورت از مبدل تنها یک جریان عبور میکند که با اساس کار مبدل منافات دارد.
منـــبــــع:
معاضد، محمدتقی و دیگران، مهندسی شیمی، انتشارات ارکان، زمستان 1379
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 4 صفحه
قسمتی از متن .doc :
مبدلهای حرارتی
مبدلهای حرارتی، دستگاههایی هستند که به کمک آنها میتوان در اثر تماس غیرمستقیم دو سیال، سیالی را سرد یا گرم کرد. در مورد این که کدام یک از دو سیال داخل لوله و کدام یک خارج لوله و در پوسته جریان داشته باشد، میتوان معیارهای زیر را مدنظر قرار داد.
بهتر است سیال با ظرفیت حرارتی بیشتر در لوله داخلی و سیال با ظرفیت کمتر در لوله خارجی باشد، چون با نصب ظرفیت فین (پره) در لوله خارجی میتوان ضریب کلی انتقال حرارت (U) را افزایش داد.
سیال خورنده در لوله داخلی جریان داشته باشد تا در اثر نشت احتمالی به محیط نشت نکند.
بهتر است فاز سمی در لوله داخلی جریان داشته باشد تا در اثر نشت احتمالی به محیط نشت نکند.
سیالی که دمای آن به دمای محیط نزدیکتر است، در لوله خارجی باشد.
سیالی که تمایل به رسوبگذاری بیشتری دارد در لوله خارجی باشد.
مطابق شکل 1-1، برای محاسبه انتقال حرارت بین دو سیال میتوان از روابط زیر استفاده نمود:
qA = mA cPA (T2 – T1)A
qB = mB cPB (T1 – T2)B
q = AU∆TLn
AU = AoUo = AiUi
= LMTD
که در این رابطه، U ضریب کلی انتقال حرارت، Ui ضریب کلی انتقال حرارت مربوط به سطح داخلی و ∆Tln متوسط لگاریتمی اختلاف دما (Log Mean Temperature Difference) میباشد.
شکل 1-1 مبدل حرارتی دو لولهای و مدار الکتریکی مشابه آن
آرایش مختلف جریانها در مبدلهای حرارتی در شکل 1-2 آورده شده است. در این شکل، محور افقی تمام حالتها معرف طول مبدل میباشد.
در مورد تبخیرکنننده حالت (و) میتوان گفت که جریان با دمای بالاتر انرژی خود را به جریان خنکتر میدهد و باعث به جوش آوردن جریان با درجه حرارت پایین در درجه حرارت ثابت میشود، بهطور مشابه در حالت (د) این وضعیت برقرار است.
برای داشتن سرعت بیشتر، لولههای کوتاهتر و کاهش مشکل انبساط از مبدلهای چند مسیره استفاده میشود.
شکل 1-2 آرایش مختلف جریانها در مبدلهای حرارتی
همانطور که قبلاً اشاره شد، رابطه بالا برای مبدلهای حرارتی دو لولهای صادق است، ولی اگر مبدل به صورتهای دیگر (مبدل با یک پوسته و با مضربی از دو مسیر لوله، با دو پوسته و با مضربی از چهار مسیر لوله، مبدل حرارتی با جریان عمود بر هم یک مسیره که هر دو سیال غیرمخلوط هستند و ...) باشد مقدار گرمای انتقال یافته از رابطه زیر به دست میآید.
q = AUF∆Tln
که F ضریب تصحیح بوده و مقدار F برای انواع مختلفی از دیاگرامهای مربوط به دست میآید. طراحی مبدل (محاسبه سطح مبدل) در صورت منوط به انجام حدس و خطاست، ولی با تعریف کارایی مبدل حرارتی، این طراحی آسانتر صورت میگیرد. این روش که ناسلت آن را پایهگذاری کرد به نام روش تعداد واحدهای انتقال (N.T.U یا Number of Transfer Unit) معروف است. در ادامه به طور خلاصه به این روش پرداخته میشود:
انتقال حرارت واقعی
= کارایی مبدل حرارتی =
ماکزیمم انتقال حرارت
با توجه به اینکه q = CH(THi – Tho) = CC(TCo – Tci) (توجه شود که C=m.c که c ظرفیت حرارتی است). به راحتی میتوان دریافت که هر جریان که دارای بیشتری اختلاف دما باشد، باید کمترین C را نیز داشته باشد. یعنی:
Cc > Cmin یا CH > CC ( ∆Tc > ∆TH (1 اگر
CH > Cmin یا CC > CH ( ∆TH > ∆Tc (2 اگر
چون در تعریف کارآیی، برای ماکزیمم انتقال حرارت (مخرج تعریف) سطح مبدل را بینهایت تصور میکنیم. پس دمای خروجی جریان سرد (در حالت CH > CC) میتواند به دمای ورودی جریان گرم برسد (بهطور مشابه دمای خروجی جریان گرم در حالت CH
شکل 1-3 توزیع دما در مبدل مختلف جریان سرد بیشترین اختلاف دما را دارد.
اهمیت این رابطه در طراحی این است که فقط احتیاج به دانستن دماهای ورودی جریان گرم و سرد است، البته به شرط آن که کارایی مبدل حرارتی () معلوم باشد.
محاسبات ریاضی نشان داده است که کارآیی مبدلها فقط تابعی از نسبتهای میباشد که U ضریب کلی انتقال حرارت و A سطح مبدل حرارتی است، دو حالت بسیار ساده زیر موید این مطلب است:
در صورتی که در مبدل مختلف الجهت C=1 باشد، داریم:
در صورتی که کندانسور و یا تبخیرکننده داشته باشیم، ملاحظه شد که دمای یک جریان ثابت میماند، در مورد این جریان C = 0 or Cmax ( ∞
در ضمن هرچه NTU بیشتر شود، کارایی مبدل بیشتر میشود، به شرط آن که در مورد مبدلهای همجهت مقدار NTU از سه و در مبدلهای مختلفالجهت مقدار NTU از 5 بیشتر نباشد. کاهش نسبت نیز بر افزایش کارایی مبدل اثر دارد، ولی این کاهشِ نسبت نمیتواند تا صفر شدن دبی یکی از جریانها ادامه یابد، چرا که در این صورت از مبدل تنها یک جریان عبور میکند که با اساس کار مبدل منافات دارد.
منـــبــــع:
معاضد، محمدتقی و دیگران، مهندسی شیمی، انتشارات ارکان، زمستان 1379
سازنده: GLX
مدل: Spark1
ورژن سیستم عامل: اندروید 4.4.2
کشور: ایران
فارسی: دارد
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 107 صفحه
قسمتی از متن .doc :
تاریخچه
شناخت انرژی خورشیدی و استفاده از ان برای منظورهای مختلف بزمان ما قبل تاریخ باز می گردد شاید به دوران سفالیگری در ان هنگام روحانیون معابد به کمک جامهای بزرگ طلائی سیقل داده شده و اشعه خورشید جهت روشن کردن اتشدانهای محراب استفاده می کردند و یا در دوران فراعنه مصر در دوره امنوفیس سوم سالهای 1419-1455 قبل از میلاد بر اثر تابش خورشید بر مجسمه های ناطق هوای داخل انها گرم و مجسمه ها بصدا در می امدند همچنین بالای مقبره ممنن پسر امنوفیس پرنده ای نصب کرده بودند که بوسیله تابش خورشید صبحگاهی پرنده بصدا در می امد .
مهمترین روایتی که در رابطه با استفاده از تابش خورشید بیان شده داستان ارشمیدس دانشمند و مخترع بزرگ یونان قدیم سالهای 212-287 ق – م می باشد که ناوگان روم را با استفاده از انرژی حرارتی خورشید به اتش کشید . گفته یم شود که ارشمیدس با نصب تعداد زیادی ائینه های کوچک مربعی شکل در کنار یکدیگر که روی یک پایه متحرک قرار داشته است اشعه خورشید را از راه دور روی کشتیهای رومیان متمرکز ساخته و باین ترتیب انها را به اتش کشیده است . بهمین علت از ارشمیدس بعنوان بنیانگذار استفاده از تابش خورشید نام می برند در حالیکه منابع مصری قدیمیتر از انست .
رومیان در تاریخ می نویسند که انها مغلوب یک نیروی نامرئی شدند و اعتقاد پیدا کرده بودند که با خدایان در حال جنگ هستند . سئوال اینست که ایا ارشمیدس اطلاعات کافی درباره علم اپتیک داشته و یا از روش ساده ای برای متمرکز کردن اشعه خورشید در یک نقطه استفاده کرده است . گویا این دانشمند کتابی بنام ائینه های اتش زا نوشته بود ولی متاسفانه نسخه ای از ان جهت روشن شدن مطلب موجود نیست . شاید این کتاب در حمله ایکه چند سال بعد بوسیله رومیان انجام و باعث فتح یونان گردید نابوده شده باشد زیرا که در این حمله رومیها خود ارشمیدس را هم کشتند .
حدود 1800 سال پس از ارشمیدس شخصی بنام کیرچر (A.kircher سال 1610-1680) شاهکار ارشمیدس را تکرار کرد و با استفاده از تعدادی ائینه یک لنگرگاه چوبی را از فاصله دور اتش زد و ثابت کرد که داستان حقیقت دارد . در سال 1615 سالمون SALAMON DE CAUM اهل فرانسه بیانیه ای راجع به موتور خورشیدی منتشر کرد .
او با استفاده از تعدادی عدسی که در یک قاب نصب شده بودند اشعه خورشید را بر روی یک یک استوانه فلزی سر بسته که قسمتی از ان از آب پر شده بود متمرکز نمود . تابش خورشید باعث گرم شدن هوای داخل استوانه شده و با انبساط هوا فشار داخل محفظه افزایش یافته و اب به بیرون رانده می شد . این وسیله با اینکه جنبه اسباب بازی داشت ولی در واقع برای ایجاد علاقه جهتاستفاده از انرژی خورشید بی تاثیر نبود .
در قرن هیجدهم ناتورا اولین کوره خورشیدی را در فرانسه ساخت . بزرگترین کوره از 360 قطعه آئینه تخت کوچک تشکیل شده بود که هر کدام بطور مستقل اشعه خورشید را به یک نقطه متمرکز می گردند . این محقق کوره کوچکتری را نیز که از 168 قطعه ائینه تشکیل شده بود در سال 1747 طراحی و تولید کرد و بوسیله ان یک تل چوبی را در فاصله 60 متری اتش زد .
دستگاههای خوراک پز خورشیدی اولین بار بوسیله شخصی بنام NICHELAS DE SAUCCER 1740-1799 ساخته شد اجاق او شامل یک جعبه عایق شده با صفحه سیاهرنگی بود که قطعات شیشه ای در پوش انرا تشکیل می دادند اشعه خورشید با عبور از میان شیشه ها وارد جعبه شده و بوسیله سطح جذب و درجه حرارت داخل جعبه را به 88 درجه سانتی گراد افزایش می داد .
آنتونی لاوازیه 1743-1794 خالق شیمی نوین برای کسب بیشترین انرژی از خالص ترین منبع حرارتی تحقیقاتی در کوره های خورشیدی انجام داد و کوره ای ساخت که برای تشکیل یک عدسی محدب این کوره از دو صفحه شیشه ای که بین این دو صفحه با الکل پر شده بود استفاده نمود عدسی مایع بقطر 130 سانتیمتر و بفاصله کانونی 320 سانتیمتر بود .
چون قدرت انکسار این عدسی مایع برای بدست اوردن درجه حرارت زیاد در کانون ان موثر نبود لاوازیه عدسی کوچک دیگری را در کانون ان قرار دادو با کوچکتر کردن فاصله کانوین موثر این دستگاه قادر شد حتی پلاتینیوم را در دمای 1760 درجه سانتیگراد ذوب نماید .
بسمر BESSMER 1813-1898 پدر فولاد جهان حرارت مرود نیاز کروه خود را با استفاده از انرژی خورشیدی تامین کرد . در قرن نوزدهم تلاشهائی جهت تبدیل انرژی خورشیدی به دیگر فرمهای انرژی مثل تولید بخار و استفاده در موتورهای بخار انجام گرفت در این سالها چندین موتور بخار خورشیدی ساخته شده و مورد ازمایش قرار گرفتند در سال 1878 موشو MOUCHOT اولین کلکتور خورشیدی با متمرکز کننده مخروطی شکل را طراحی کرد . ائینه های داخل مخروط تمام اشعه های خورشیدی را در نقطه ای در وسط مخروط ناقص که جذب کننده ای در انجا نصب شده بود متمرکز می کرد .
این کلکتور را اکسیکون AXICON می نامیدند . اولین اکسیکون بزرگی که ساخته شد شامل یک صفحه از جنس نقره با قطر 540 سانتیمتر و بسطح 2/18 متر مربع بود . وزن ان با کلیه قسمتهای متحرک در جدود 1400 کیلوگرم بود و قدر داشت 78 درصد از انرژی خورشیدی تابیده شده را جذب کند . ولی از انجا که در این طرح تابش خورشید بحای یک نقطه در یک سطح متمرکز می شود دارای شدت کمتری بود . قدرت تولیدی مخروط ناقص موشو برای راه اندازی ماشین بخاری بقدرت 5/1 کیلو وات کافی بود که تقریبا فقط 3 % از انرژی جذب شده را تحویل می داد در صورتیکه ماشینهای بخار ذغال سنگی قادر به تحویل 9 % تا 11 % انرژی دریافتی می باشند . طی سالهای بعد انرژی