لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 5 صفحه
قسمتی از متن .doc :
سلاح هسته ای
جنگافزار هستهای سلاحهایی هستند که در آنها از انرژی حاصل از شکافت یا همجوشی هستهای برای تخریب و کشتار استفاده میشود.
این سلاحها در طول تاریخ تنها ۲ بار توسط آمریکا مورد استفاده قرار گرفت.
بمب اتمی
بمب اتمی نام رایج وسایل انفجاری است که در آنها از انرژی آزاد شده در فرآیند شکافت هستهای، یاگداخت هستهای برای تخریب استفاده میشود. بمبهای اتمی که برمبنای گداخت کار میکنند نسل نوین بمب اتمی هستند و قدرتی بسیار بیشتر از بمبهای شکافتی دارند. مبنای آزاد شدن انرژی در هر دو نوع بمب اتمی تبدیل ماده به انرژی (E = mc2)است اما در بمبهای گداختی جرم بیشتری از ماده به انرژی تبدیل میشود. نخستین بمب اتمی که بمبی پلوتونیومی(از نوع شکافتی) بود در سال ۱۹۴۵م در جریان جنگ جهانی دوم در آمریکا ساخته و در شانزدهم ژوئیهٔ ۱۹۴۵م در صحرای آلاموگوردو در نیو مکزیکوی آمریکا آزمایش شد. آمریکا تنها کشوری است که از بمب اتمی (شکافتی-اورانیومی در هیروشیما وشکافتی - پلوتونیومی در ناگازاکی) استفاده نظامی کردهاست. شوروی در سال ۱۹۴۹ دارای بمب اتمی شد.
اختراع این سلاح،ریشه طولانی در تاریخ علم فیزیک و شیمی دارد اما استفاده از دانش به دست آمده، برای ساخت بمب اتمی بیشتر به روبرت اوپنهایمر و ادوارد تلر نسبت داده میشود.
تاریخچهٔ سلاحهای هسته ای
اولین تلاشها در جهت ساخت بمب اتمی در آلمان نازی آغاز گشت. در این دوران، شیمیدانی به نام پل هارتک از اساتید دانشگاه هامبورگ به توان بالقوه نیروی اتمی برای کاربردهای نظامی پی برد. وی در ۲۴ فوریه ۱۹۳۹ امکان استفاده از انرژی هستهای به عنوان یک سلاح با توان تخریبی نا محدود را طی نامهای به وزارت جنگ در برلین اطلاع داد. بهدنبال این امر گروهی برای تحقیق در این رابطه تشکیل شد و وارنرهایزنبرگ فیزیکدان برجسته آلمانی به طور غیر رسمی سرپرست تیم تحقیقاتی آلمان برای ساخت بمب هستهای گشت.
تصویر اولین آزمایش اتمی در ترینیتی ایالت نیومکزیکو
در همین زمان، آلبرت انیشتین طی نامه معروف خود به روزولت رئیس جمهور وقت آمریکا خطر دستیابی آلمان به تولید بمب اتمی را گوشزد کرد. متعاقب این اخطار روزولت دستور ایجاد پروژه منهتن با هدف تحقیق در این رابطه و تولید بمب اتمی را با همکاری کشور انگلستان صادر کرد. برای این پروژه تأسیساتی در لوس آلاموس در ایالت نیومکزیکو، اوک ریج ایالت تنسی و همفورد ایالت واشنگتن به کار گرفته شدند و تیمی از برجستهترین دانشمندان آن دوران به استخدام این پروژه در آمدند. محققان آلمانی موفق به تولید بمب اتمی نشدند. اگرچه ادعاهایی در زمینه آزمایش نوعی ابزار هستهای توسط نازیها پیش از پایان جنگ جهانی دوم مطرح شده است[۱]. اما تیم آمریکایی به سرپرستی فیزیکدان برجسته، جی آر اوپنهایمر موفق به ساخت عملی اولین بمب هستهای بود که در ۱۶ جولای ۱۹۴۵ در ناحیهای موسوم به ترینیتی در نیومکزیکو آزمایش شد.
به فاصله کوتاهی در ۶ آگوست ۱۹۴۵،بمب افکن اسکادران ۵۰۹ نیروی هوایی آمریکا موسوم به Enola Gay(که اکنون در موزهای در واشنگتن نگهداری میشود)، از پایگاهی در جنوب اقیانوس آرام به پرواز در آمد و در ساعت ۸:۱۵ دقیقه به وقت محلی، بمب موسوم به پسر کوچک را بر شهر هیروشیما منفجر ساخت. این بمب که در طراحی آن از ۶۴ کیلوگرم اورانیوم استفاده شده بود، از ارتفاع ۹۶۰۰ متری رها شد و در ارتفاع ۵۸۰ متری سطح زمین با شدتی معادل با انفجار ۱۵ هزار تن TNT منفجر شد. مجموع تلفات اولیه و کشته شدگان ناشی از عوارض این انفجار را بالغ بر ۱۴۰۰۰۰ نفر تخمین میزنند. سه روز بعد در ۹ آگوست انفجار بمب مرد چاق در شهر ناکازاگی موجب مرگ ۷۴۰۰۰ نفر دیگر شد. این بمب که از پلوتونیوم به عنوان ماده شکافت پذیر استفاده میکرد، انفجاری به شدت ۲۱ کیلوتن TNT ایجاد کرد. بمب دیگری نیز در پروژه منهتن تولید شده بود که هرگز از آن استفاده نشد.
پس از پایان جنگ دوم جهانی دانشمندان در آمریکا به تحقیق در رابطه با تسلیحات هستهای ادامه دادند. اگرچه این تصور وجود داشت که هیچ کشوری دیگری در دنیا نمیتواند تا پیش از سال ۱۹۵۵ به فنآوری ساخت سلاح هستهای دست یابد، اما کلاوس فیوکس یکی از فیزیکدانان آلمانی که در رابطه با مواد فوق انفجاری (High Explosive) با تیم اوپنهایمر همکاری میکرد، طرحها و جزئیات طراحی بمب آزمایش شده در ترینیتی را در اختیار جاسوسان شوروی قرارداد. به این ترتیب در ۲۹ آگوست ۱۹۴۹ اتحاد جماهیر شوروی سوسیالیستی اولین آزمایش اتمی خود را با موفقیت انجام داد و غرب را در وحشت فرو برد. این انفجار اثر زیادی در تسریع جنگ سرد گذارد و موجب ایجاد رقابت تسلیحاتی بین آمریکا و شوروی گردید.
پس از آن ایالات متحده جهت حفظ برتری تسلیحاتی خود ، تحقیق در رابطه با ساخت بمب گداختی(یا هیدروژنی) یا به عبارت دقیقتر ، تسلیحات گرما-هستهای (Termo- Nuclear) را آغاز کرد.پیش از این اوپنهایمر به دلیل اتخاذ مواضعی علیه ساخت تسلیحات هستهای از سرپرستی پروژه کنار گذارده شد و ادوارد تلر هدایت عملی پروژه ساخت بمب هیدروژنی را برعهده گرفت. نخستین آزمایش یک وسیله گرما-هستهای با اسم رمز مایک در نوامبر سال ۱۹۵۲ در جزیره کوچکی به نام الوگالب در مجاورت انی وتاک در جزایر مارشال انجام شد.وزن تجهیزات به کار رفته در این انفجار شامل دستگاههای تبرید به بیش از ۶۵ تن میرسید. از آنجایی که در این سیستم مستقیما از ایزوتوپهای دوتریوم و تریتیوم مایع استفاده میشد، به آن لقب بمب خیس(wet bomb) داده بودند .پیش بینی میشد که قدرت این انفجار معادل یک یا دو مگاتن تی ان تی باشد. اما برخلاف انتظار شدت انفجار معادل ۱۰٫۴ مگاتن تی ان تی بود. نتایج انفجار بسیار هراسناک بود. قطر گوی آتشین حاصل از این انفجار به ۵ کیلومتر رسید. جزیره الوگالب تقریباً تبخیر شد و حفرهای به عمق ۸۰۰ متر و شعاع دهانه ۳ کیلومتر برجای ماند.
نکاتی در مورد بمب اتمی
منطقه انفجار بمبهای هستهای به پنج قسمت تقسیم میشود:۱- منطقه تبخیر ۲- منطقه تخریب کلی ۳- منطقه آسیب شدید گرمایی ۴- منطقه آسیب شدید انفجاری ۵- منطقه آسیب شدید باد و آتش. در منطقه تبخیر درجه حرارتی معادل سیصد میلیون درجه سانتیگراد بوجود میآید و هر چیزی، از فلز گرفته تا انسان و حیوان، در این درجه حرارت آتش نمیگیرد بلکه بخار میشود.
آثار زیانبار این انفجار حتی تا شعاع پنجاه کیلومتری وجود دارد و موج انفجار آن که حامل انرژی زیادی است میتواند میلیونها دلار تجهیزات الکترونیکی پیشرفته نظیر ماهوارهها و یا سیستمهای مخابراتی را به مشتی آهن پاره تبدیل کند و همه آنها را از کار بیندازد.
اینها همه آثار ظاهری و فوری بمبهای هستهای است . پس از انفجار تا سالهای طولانی تشعشعات زیانبار رادیواکتیو مانع ادامه حیات موجودات زنده در محلهای نزدیک به انفجار میشود.
پرتو رادیو اکتیو از پرتوهای آلفا، بتا، گاما و تابش نوترونی تشکیل شدهاست. نوع آلفای آن بسیار خطرناک است ولی توان نفوذ اندکی دارد.این پرتو در بافت زنده تنها کمتر از ۱۰۰ میکرون نفوذ میکند اما برای آن ویرانگر است.
پرتوی گاما از دیوار و سنگ نیز عبور میکند.هر ۹ میلیمتر سرب یا هر ۲۵ متر هوا شدت تابش آن را نصف میکند. این پرتو نیز با توجه به فرکانس بسیار بالا، انرژی زیادی دارد که اگر به بدن انسان برخورد کند از ساختار سلولی آن عبور کرده و در مسیر حرکت خود باعث تخریب ماده دزوکسی ریبو نوکلوئیک اسید یا همان DNA شده و سرانجام زمینه را برای پیدایش انواع سرطانها، سندرمها ونقایص غیر قابل درمان دیگر فراهم میکند وحتی این نقایص به نسلهای آینده نیز منتقل خواهد شد. برای جلوگیری از نفوذ تابش گاما به حدود ۱۰ سانتیمتر دیوارهٔ سربی نیاز است.
بمب اتمی نوع A
ساخت این نوع بمب اتمی بسیار ساده میباشد و تنها به مقدار کافی اورانیوم با خلوص مناسب که به روش مناسبی قالب گیری شده باشد (فرم نیم کروی)احتیاج دارد. در این روش اورانیوم قالب گیری شده توسط تفنگ سادهای مورد هدف قرار میگیرد. این تفنگ مانند تفنگ جنگی بسیار سادهای میباشد که تنها با باروت و یا هر چیز قابل انفجار دیگری پرشده و گلوله آن تنها اورانیوم غنی شده میباشد.برخورد دو قطعه اورانیوم باعث انفجار هستهای میشود.بعلت اینکه دو قطعه اورانیوم همدیگر را دفع میکنند روش قالب گیری نیم کروی مهمترین بخش این کار میباشد.
تعداد بمبهای اتمی موجود در جهان
بان کیمون، دبیرکل سازمان ملل متحد، در کنفرانس سلاحهای هستهای سازمان ملل در مکزیکو سیتی که شصت و دومین کنفرانس سالانه از این نوع محسوب میشد بیان کرد که تا تاریخ ۹ سپتامبر ۲۰۰۹ حدود ۲۰٬۰۰۰ بمب اتمی در جهان ساخته شده است.[۲]
انواع بمب اتمی
بمب حاصل از شکافت (A-Bomb)
بمب حاصل از همجوشی (H-Bomb)
بمب نوترونی (N-Bomb)
پدافند هستهای
استفاده از سلاحهای اتمی به دلیل اثرات و ویژگیهای خاصی بوده که سایر جنگ افزارها چنین قابلیتی ندارند از جمله:
ایجاد خسارتهای سنگین جانی و مالی
غیر قابل استفاده کردن و آلودگی محیط
تهدید طرف مقابل و تحت فشار گذاشتن طرف مقابل برای قبول خواستهها
تغییر توازن قدرت درجنگ
وسعت شعاع تخریب و خسارات هنگفت
استفاده سریع در هر شرایط
نفوذ اثرات تخریبی آن در تاسیسات
البته با وجود این قابلیتها کشورها ودولتهای دارنده سلاح هستهای با مشکلاتی رو به رو اند به شرح زیر:
مخالف اذهان عمومی جهان است.
عمدهٔ تجهیزات و تأسیسات را نابود میسازد که خود دشمن نیز ممکن است به آن نیاز پیدا کند.
آلودگی شدید هستهای که باعث عدم استفاده از منطقه میگردد.
عدم کنترل شعاع آلودگی که در اثر کم بودن ممکن است آن خسارت مورد نظر وارد نشود و همچنین با زیاد شدن شعاع آلودگی ممکن است به نیروهای خودی آسیب برسد.
اثرات و مراحل انفجار هستهای
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 23 صفحه
قسمتی از متن .doc :
تحلیل اقتصادی انرژی هسته ای در تولید برق
انرژی هسته ای از عمده ترین مباحث علوم و تکنولوژی هسته ای است و هم اکنون نقش عمده ای را در تأمین انرژی کشورهای مختلف خصوصا کشورهای پیشرفته دارد. اهمیت انرژی و منابع مختلف تهیه آن، در حال حاضر جزء رویکردهای اصلی دولتها قرار دارد. به عبارت بهتر، از مسائل مهم هر کشور در جهت توسعه اقتصادی و اجتماعی بررسی ، اصلاح و استفاده بهینه از منابع موجود انرژی در آن کشور است. امروزه بحرانهای سیاسی و اقتصادی و مسائلی نظیر محدودیت ذخایر فسیلی، نگرانیهای زیست محیطی، ازدیاد جمعیت، رشد اقتصادی ، همگی مباحث جهان شمولی هستند که با گستردگی تمام فکر اندیشمندان را در یافتن راهکارهای مناسب در حل معظلات انرژی در جهان به خود مشغول داشته اند. در حال حاضر اغلب ممالک جهان به نقش و اهمیت منابع مختلف انرژی در تأمین نیازهای حال و آینده پی برده و سرمایه گذاریها و تحقیقات وسیعی را در جهت سیاستگذاری، استراتژی و برنامه های زیربنایی و اصولی انجام می دهند. هم اکنون تدوین استراتژی که مرکب از بررسی تمامی پارامترهای تأثیر گذار در انرژی و تعیین راهکارهای مناسب جهت تمیزتر و کارا ترنمودن انرژی و الگوی بهینه مصرف آن می باشد، در رأس برنامه های زیربنایی اکثر کشورهای جهان قرار دارد. در میان حاملهای مختلف انرژی،انرژی هسته ای جایگاه ویژه ای دارد. هم اکنون بیش از 430 نیروگاه هسته ای در جهان فعال می باشند و انرژی برخی کشورها مانند فرانسه عمدتا از برق هسته ای تأمین می شود
جمهوری اسلامی ایران بیش از سه دهه است که تحقیقات متنوعی را در زمینه های مختلف علوم و تکنولوژی هسته ای انجام داده و براساس استراتژی خود، مصمم به ایجاد نیروگاههای هسته ای به ظرفیت کل 6000 مگاوات تا سال 1400 هجری شمسی می باشد. در این زمینه، جمهوری اسلامی ایران در نشست گذشته آژانس بین المللی انرژی اتمی، تمایل خود را نسبت به همکاری تمامی کشورهای جهان جهت ایجاد این نیروگاهها و تهیه سوخت مربوطه رسما اعلام نموده است.
کاربردهای علوم و تکنولوژی هسته ای
علیرغم پیشرفت همه جانبه علوم و فنون هسته ای در طول نیم قرن گذشته، هنوز این تکنولوژی در اذهان عمومی ناشناخته مانده است. وقتی صحبت از انرژی اتمی به میان می آید، اغلب مردم ابر قارچ مانند حاصل از انفجارات اتمی و یا راکتورهای اتمی برای تولید برق را در ذهن خود مجسم می کنند و کمتر کسی را می توان یافت که بداند چگونه جنبه های دیگری از علوم هسته ای در طول نیم قرن گذشته زندگی روزمره او را دچار تحول نموده است. اما حقیقت در این است که در طول این مدت در نتیجه تلاش پیگیر پژوهشگران و مهندسین هسته ای، این تکنولوژی نقش مهمی را در ارتقاء سطح زندگی مردم، رشد صنعت و کشاورزی و ارائه خدمات پزشکی ایفاء نموده است. موارد زیر از مهمترین استفاده های صلح آمیز از علوم و تکنولوژی هسته ای می باشند:
1- استفاده از انرژی حاصل از فرآیند شکافت هسته اورانیوم یا پلوتونیوم در راکتورهای اتمی جهت تولید برق و یا شیرین کردن آب دریاها.
2-استفاده از رادیوایزوتوپها در پزشکی، صنعت و کشاورزی
3- استفاده از پرتوهای ناشی از فرآیندهای هسته ای در پزشکی، صنعت و کشاورزی
برق هسته ای
از مهمترین منابع استفاده صلح آمیز از انرژی اتمی، ساخت راکتورهای هسته ای جهت تولید برق می باشد. راکتورهسته ای وسیله ای است که در آن فرایند شکافت هسته ای بصورت کنترل شده انجام می گیرد. در طی این فرایند انرژی زیاد آزاد می گردد به نحوی که مثلا در اثر شکافت نیم کیلوگرم اورانیوم انرژی معادل بیش از 1500 تن زغال سنگ بدست می آید. هم اکنون در سراسر جهان، راکتورهای متعددی در حال کار وجود دارند که بسیاری از آنها برای تولید قدرت و به منظور تبدیل آن به انرژی الکتریکی، پاره ای برای راندن کشتیها و زیردریائیها، برخی برای تولید رادیو ایزوتوپوپها و تحقیقات علمی و گونه هایی نیز برای مقاصد آزمایشی و آموزشی مورد استفاده قرار می گیرند. در راکتورهای هسته ای که برای نیروگاههای اتمی طراحی شده اند (راکتورهای قدرت)، اتمهای اورانیوم و پلوتونیم توسط نوترونها شکافته می شوند و انرژی آزاد شده گرمای لازم را برای تولید بخار ایجاد کرده و بخار حاصله برای چرخاندن توربینهای مولد برق بکار گرفته می شوند.
راکتورهای اتمی را معمولا برحسب خنک کننده، کند کننده، نوع و درجه غنای سوخت در آن طبقه بندی می کنند. معروفترین راکتورهای اتمی، راکتورهایی هستند که از آب سبک به عنوان خنک کننده و کند کننده و اورانیوم غنی شده(2 تا 4 درصد اورانیوم 235) به عنوان سوخت استفاده می کنند. این راکتورها عموما تحت عنوان راکتورهای آب سبک(LWR ) شناخته می شوند. راکتورهای WWER,BWR,PWR از این دسته اند. نوع دیگر، راکتورهایی هستند که از گاز به عنوان خنک کننده، گرافیت به عنوان کند کننده و اورانیوم طبیعی یا کم غنی شده به عنوان سوخت استفاده می کنند. این راکتورها به گاز- گرافیت معروفند. راکتورهای HTGR,AGR,GCR از این نوع می باشند. راکتور PHWR راکتوری است که از آب سنگین به عنوان کندکننده و خنک کننده و از اورانیوم طبیعی به عنوان سوخت استفاده می کند. نوع کانادایی این راکتور به CANDU موسوم بوده و از کارایی خوبی برخوردار می باشد. مابقی راکتورها مثل FBR (راکتوری که از مخلوط اورانیوم و پلوتونیوم به عنوان سوخت و سدیم مایع به عنوان خنک کننده استفاده کرده و فاقد کند کننده می باشد) LWGR(راکتوری که از آب سبک به عنوان خنک کننده و از گرافیت به عنوان کند کننده استفاده می کند) از فراوانی کمتری برخوردار می باشند. در حال حاضر، راکتورهای PWR و پس از آن به ترتیب PHWR,WWER,BWR فراوانترین راکتورهای قدرت در حال کار جهان می باشند. به لحاظ تاریخی اولین راکتور اتمی در آمریکا بوسیله شرکت "وستینگهاوس" و به منظور استفاده در زیر دریائیها ساخته شد. ساخت این راکتور پایه اصلی و استخوان بندی تکنولوژی فعلی نیروگاههای اتمیPWR را تشکیل داد. سپس شرکت جنرال الکتریک موفق به ساخت راکتورهایی از نوع BWR گردید. اما اولین راکتوری که اختصاصا جهت تولید برق طراحی شده، توسط شوروی و در ژوئن 1954در "آبنینسک" نزدیک مسکو احداث گردید که بیشتر جنبه نمایشی داشت، تولید الکتریسیته از راکتورهای
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 12 صفحه
قسمتی از متن .doc :
انرژی هسته ای از معدن تا نیروگاه
استفاده از انرژی هستهای برای تولید برق روشی پیچیده اما کارامد برای تامین انرژی مورد نیاز بشر است. به طور کلی برای بهرهبرداری از انرژی هستهای در نیروگاههای هستهای، از عنصر اورانیوم غنی شده به عنوان سوخت در راکتورهای هستهای استفاده میشود که ماحصل عملکرد نیروگاه، انرژی الکتریسته است. عنصر اورانیوم که از معادن استخراج میشود به صورت طبیعی در راکتورهای نیروگاهها قابل استفاده نیست و به همین منظور باید آن را به روشهای مختلف به شرایط ایده عال برای قرار گرفتن درون راکتور آماده کرد. اورانیوم یکی از عناصر شیمیایی جدول تناوبی است که نماد آن Uو عدد اتمی آن ۹۲است. این عنصر دارای دمای ذوب هزار و ۴۵۰درجه سانتیگراد بوده و به رنگ سفید مایل به نقرهای، سنگین، فلزی و رادیواکتیو است و به رغم تصور عام، فراوانی آن در طبیعت حتی از عناصری از قبیل جیوه، طلا و نقره نیز بیشتر است.
عنصر اورانیوم در طبیعت دارای ایزوتوپهای مختلف از جمله دو ایزوتوپ مهم و پایدار اورانیوم ۲۳۵و اورانیوم ۲۳۸است. برای درک مفهوم ایزوتوپهای مختلف از هر عنصر باید بدانیم که اتم تمامی عناصر از سه ذره اصلی پروتون، الکترون و نوترون ساخته میشوند که در تمامی ایزوتوپهای مختلف یک عنصر، تعداد پروتونهای هسته اتمها با هم برابر است وتفاوتی که سبب بوجود آمدن ایزوتوپهای مختلف از یک عنصر میشود ، اختلاف تعداد نوترونهای موجود در هسته اتم است. به طورمثال تمامی ایزوتوپهای عنصر اورانیوم در هسته خود دارای ۹۲ پروتون هستند اما ایزوتوپ اورانیوم ۲۳۸در هسته خود دارای ۱۴۶نوترون ( (۹۲+۱۴۶=۲۳۸و ایزوتوپ اورانیوم ۲۳۵دارای ۱۴۳نوترون( (۹۲+۱۴۳=۲۳۵در هسته خود است.
اورانیوم ۲۳۵مهمترین ماده مورد نیاز راکتورهای هستهای(برای شکافته شدن و تولید انرژی) است اما مشکل کار اینجاست که اورانیوم استخراج شده از معدن ترکیبی از ایزوتوپهای ۲۳۸و ۲۳۵بوده که در این میان سهم ایزوتوپ ۲۳۵بسیار اندک(حدود ۰/۷درصد) است و به همین علت باید برای تهیه سوخت راکتورهای هستهای به روشهای مختلف درصد اوانیوم ۲۳۵را در مقایسه با اورانیوم ۲۳۸بالا برده و بسته به نوع راکتور هستهای به ۲تا ۵درصد رساند و به اصطلاح اورانیوم را غنیسازی کرد.
درون راکتورهای هستهای، هسته اورانیوم ۲۳۵به صورت کنترل شده شکسته شده که در این فرایند مقداری جرم به انرژی تبدیل میشود. همین انرژی سبب ایجاد حرارت(اغلب از این حرارت برای تبخیر آب استفاده میشود) و در نتیجه چرخیدن توربینها و در نهایت چرخیدن ژنراتورهای نیروگاه و تولید برق میشود.
در نیروگاههای غیر هستهای، از سوزاندن سوختهای فسیلی از قبیل نفت و یا زغال سنگ برای گرم کردن آب و تولید بخار استفاده میشود که یک مقایسه ساده میان نیروگاههای هستهای و غیر هستهای، صرفه اقتصادی قابل توجه نیروگاههای هستهای را اثبات میکند.
به طور مثال، برای تولید ۷۰۰۰مگاوات برق حدود ۱۹۰میلیون بشکه نفت خام مصرف میشود که استفاده از سوخت هستهای برای تولید همین میزان انرژی سالیانه میلونها دلار صرفه جویی به دنبال دارد و به علاوه میزان آلایندگی زیست محیطی آن نیز بسیار کمتر است.
کافی است بدانیم که مصرف این ۱۹۰میلیون بشکه نفت خام برای تولید ۷۰۰۰مگاوات برق، ۱۵۷هزار تن گاز گلخانهای دی اکسید کربن، ۱۵۰تن ذرات معلق در هوا، ۱۳۰تن گوگرد و ۵تن اکسید نیتروژن در محیط زیست پراکنده میکند که نیروگاههای هستهای این آلودگیها را ندارند. پس از آشنایی با مفاهیم کلی انرژی هستهای و مزایای آن، ابتدا با مراحل مختلف چرخه سوخت هستهای آشنا میشویم و سپس نحوه استفاده از سوخت هستهای درون راکتور را مرور میکنیم.
چرخه سوخت هستهای عبارت است از:
۱ - فراوری سنگ معدن اورانیوم
2- تبدیل و غنیسازی اورانیوم
3- تولید سوخت هستهای
4- بازفرآوری سوخت مصرف شده.
در حال حاضر چند کشور صنعتی جهان هر کدام در یک، چند و یا همه چهار مرحله یاد شده از چرخه سوخت هستهای فعالیت میکنند.
هم اکنون به لحاظ صنعتی، کشورهای فرانسه، ژاپن، روسیه، آمریکا و انگلیس دارای تمامی مراحل چرخه سوخت هستهای در مقیاس صنعتی هستند و در مقیاس غیرصنعتی، کشورهای دیگری مثل هند نیز به لیست فوق اضافه میشوند.
کشورهای کانادا و فرانسه در مجموع دارای بزرگترین کارخانههای تبدیل اورانیوم(مرحله پیش از غنیسازی ) هستند که محصولات آنها شاملUO3,UO2,UF6 غنی نشده میباشد و پس از آنها به ترتیب کشورهای آمریکا، روسیه و انگلستان قرار دارند. در زمینه غنیسازی نیز، دو کشور آمریکا و روسیه دارای بزرگترین شبکه غنیسازی جهان هستند.
آمریکا هم اکنون بزرگترین تولیدکننده سوخت هستهای(مرحله بعد از غنی سازی) در جهان است و پس از آمریکا، کانادا تولیدکننده اصلی سوخت هستهای در جهان محسوب میشود. پس از آمریکا و کانادا، کشورهای انگلیس، روسیه، ژاپن، فرانسه، آلمان، هند، کره جنوبی و سوئد از تولیدکنندگان اصلی سوخت هستهای جهان هستند. آمریکا بیشترین سهم بازفراوری سوخت مصرف شده هستهای در جهان را داراست و پس از آن فرانسه، انگلیس، روسیه، هند و ژاپن قرار دارند. درحال حاضر بین کشورهای جهان سوم، هندوستان پیشرفتهترین کشور در زمینه دانش فنی چرخه سوخت هستهای است.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .DOC ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 20 صفحه
قسمتی از متن .DOC :
انرژی هسته ای
استفاده اصلی از انرژی هستهای، تولید انرژی الکتریسته است. این راهی ساده و کارآمد برای جوشاندن آب و ایجاد بخار برای راهاندازی توربینهای مولد است. بدون راکتورهای موجود در نیروگاههای هستهای، این نیروگاهها شبیه دیگر نیروگاهها زغالسنگی و سوختی میشود. انرژی هستهای بهترین کاربرد برای تولید مقیاس متوسط یا بزرگی از انرژی الکتریکی بهطور مداوم است. سوخت اینگونه ایستگاهها را اوانیوم تشکیل میدهد.
چرخه سوخت هستهای تعدادی عملیات صنعتی است که تولید الکتریسته را با اورانیوم در راکتورهای هستهای ممکن میکند.
اورانیوم عنصری نسبتاً معمولی و عادی است که در تمام دنیا یافت میشود. این عنصر بهصورت معدنی در بعضی از کشورها وجود دارد که حتماً باید قبل از مصرف به صورت سوخت در راکتورهای هستهای، فرآوری شود.
الکتریسته با استفاده از گرمای تولید شده در راکتورهای هستهای و با ایجاد بخار برای بهکار انداختن توربینهایی که به مولد متصلاند تولید میشود.
سوختی که از راکتور خارج شده، بعداز این که به پایان عمر مفید خود رسید میتواند به عنوان سوختی جدید استفاده شود.
فعالیتهای مختلفی که با تولید الکتریسیته از واکنشهای هستهای همراهند مرتبط به چرخه سوخت هستهای هستند. چرخه سوختی انرژی هستهای با اورانیوم آغاز میشود و با انهدام پسماندههای هستهای پایان مییابد. دوبار عملآوری سوختهای خرج شده به مرحلههای چرخه سوخت هستهای شکلی صحیح میدهد.
اورانیوم
اورانیوم فلزی رادیواکتیو و پرتوزاست که در سراسر پوسته سخت زمین موجود است. این فلز حدوداً 500 بار از طلا فراوانتر و به اندازه قوطی حلبی معمولی و عادی است. اورانیوم اکنون به اندازهای در صخرهها و خاک و زمین وجود دارد که در آب رودخانهها، دریاها و اقیانوسها موجود است. برای مثال این فلز با غلظتی در حدود 4 قسمت در هر میلیون (ppm4) در گرانیت وجود دارد که 60 درصد از کره زمین را شامل میشود، در کودها با غلظتی بالغ بر ppm400 و در تهمانده زغالسنگ با غلظتی بیش از ppm100 موجود است. اکثر رادیو اکتیویته مربوط به اورانیوم در طبیعت در حقیقت ناشی از معدنهای دیگری است که با عملیات رادیواکتیو به وجود آمدهاند و در هنگام استخراج از معدن و آسیاب کردن به جا ماندهاند.
چند منطقه در سراسر دنیا وجود دارد که غلظت اورانیوم موجود در آنها به قدر کافی است که استخراج آن برای استفاده از نظر اقتصادی به صرفه و امکانپذیر است. این نوع مواد غلیظ، سنگ معدن یا کانه نامیده میشوند.
استخراج اورانیوم
هر دو نوع حفاری و تکنیکهای موقعیتی برای کشف کردن اورانیوم به کار میروند، حفاری ممکن است به صورت زیرزمینی یا چالهای باز و روی زمین انجام شود.
در کل، حفاریهای روزمینی در جاهایی استفاده میشود که ذخیره معدنی نزدیک به سطح زمین و حفاریهای زیرزمینی برای ذخیرههای معدنی عمیقتر به کار میرود. بهطور نمونه برای حفاری روزمینی بیشتر از 120 متر عمق، نیاز به گودالهای بزرگی بر سطح زمین است؛ اندازه گودالها باید بزرگتر از اندازه ذخیره معدنی باشد تا زمانی که دیوارههای گودال محکم شوند تا مانع ریزش آنها شود. در نتیجه، تعداد موادی که باید به بیرون از معدن انتقال داده شود تا به کانه دسترسی پیدا کند زیاد است.
حفاریهای زیرزمینی دارای خرابی و اخلالهای کمتری در سطح زمین هستند و تعداد موادی که باید برای دسترسی به سنگ معدن یا کانه به بیرون از معدن انتقال داده شوند بهطور قابل ملاحظهای کمتر از حفاری نوع روزمینی است.
مقدار زیادی از اورانیوم جهانی از (ISL) (In Sitaleding) میآید. جایی که آبهای اکسیژنه زیرزمینی در معدنهای کانهای پرمنفذ به گردش میافتند تا اورانیوم موجود در معدن را در خود حل کنند و آن را به سطح زمین آورند. (ISL) شاید با اسید رقیق یا با محلولهای قلیایی همراه باشد تا اورانیوم را محلول نگهدارد، سپس اورانیوم در کارخانههای آسیابسازی اورانیوم، از محلول خود جدا میشود.
در نتیجه انتخاب روش حفاری برای تهنشین کردن اورانیوم بستگی به جنس دیواره معدن کانه سنگ، امنیت و ملاحظات اقتصادی دارد.
در غالب معدنهای زیرزمینی اورانیوم، پیشگیریهای مخصوصی که شامل افزایش تهویه هوا میشود، لازم است تا از پرتوافشانی جلوگیری شود.
آسیاب کردن اورانیوم
محل آسیاب کردن معمولاً به معدن استخراج اورانیوم نزدیک است. بیشتر امکانات استخراجی شامل یک آسیاب میشود. هرچه جایی که معدنها قرار دارند به هم نزدیکتر باشند یک آسیاب میتواند عمل آسیابسازی چند معدن را انجام دهد. عمل آسیابسازی اکسید اورانیوم غلیظی تولید میکند که از آسیاب حمل میشود. گاهی اوقات به این اکسیدها کیک زرد میگویند که شامل 80 درصد اورانیوم میباشد. سنگ معدن اصل شاید دارای چیزی در حدود 1/0 درصد اورانیوم باشد.
در یک آسیاب، اورانیوم با عمل سنگشویی از سنگهای معدنی خرد شده جدا میشود که یا با اسید قوی و یا با محلول قلیایی قوی حل میشود و به صورت محلول در میآید. سپس اورانیوم با تهنشین کردن از محلول جدا میشود و بعداز خشک کردن و معمولاً حرارت دادن به صورت اشباع شده و غلیظ در استوانههای 200 لیتری بستهبندی میشود.
باقیمانده سنگ معدن که بیشتر شامل مواد پرتوزا و سنگ معدن میشود در محلی معین به دور از محیط معدن در امکانات مهندسی نگهداری میشود. (معمولاً در گودالهایی روی زمین).
پسماندههای دارای مواد رادیواکتیو عمری طولانی دارند و غلظت آنها کم خاصیتی سمی دارند. هرچند مقدار کلی عناصر پرتوزا کمتر از سنگ معدن اصلی است و نیمه عمر آنها کوتاه خواهد بود اما این مواد باید از محیط زیست دور بمانند.
تبدیل و تغییر
محلول آسیاب شده اورانیوم مستقیماً قابل استفاده بهعنوان سوخت در راکتورهای هستهای نیست. پردازش اضافی به غنیسازی اورانیوم مربوط است که برای تمام راکتورها لازم است.
این عمل اورانیوم را به نوع گازی تبدیل میکند و راه بهدست آوردن آن تبدیل کردن به هگزا فلورید (Hexa Fluoride) است که در دمای نسبتاً پایین گاز است.
در وسیلهای تبدیلگر، اورانیوم به اورانیوم دیاکسید تبدیل میشود که در راکتورهایی که نیاز به اورانیوم غنی شده ندارند استفاده میشود.
بیشتر آنها بعداز آن که به هگزافلورید تبدیل شدند برای غنیسازی در کارخانه آماده هستند و در کانتینرهایی که از جنس فلز مقاوم و محکم است حمل میشوند. خطر اصلی این طبقه از چرخه سوختی اثر هیدروژن فلورید (Hydrogen Fluoride) است.
غنی سازی اورانیم
سنگ معدن اورانیوم موجود در طبیعت از دو ایزوتوپ ۲۳۵ به مقدار ۷/۰ درصد و اورانیوم ۲۳۸ به مقدار ۳/۹۹ درصد تشکیل شده است. سنگ معدن را ابتدا در اسید حل کرده و بعد از تخلیص فلز، اورانیوم را به صورت ترکیب با اتم فلئور (F) و به صورت مولکول اورانیوم هکزا فلوراید UF6 تبدیل می کنند که به حالت گازی است. سرعت متوسط مولکول های گازی با جرم مولکولی گاز نسبت عکس دارد این پدیده را گراهان در سال ۱۸۶۴ کشف کرد. از این پدیده که به نام دیفوزیون گازی مشهور است برای غنی سازی اورانیوم استفاده می کنند.در عمل اورانیوم هکزا فلوراید طبیعی گازی شکل را از ستون هایی که جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور می دهند. منافذ موجود در جسم متخلخل باید قدری بیشتر از شعاع اتمی یعنی در حدود ۵/۲ انگشترم (۰۰۰۰۰۰۰۲۵/۰ سانتیمتر) باشد. ضریب جداسازی متناسب با اختلاف جرم
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 4 صفحه
قسمتی از متن .doc :
دسترسی ایران به بازار سوخت هسته ای بین المللی و همکاری در انرژی هسته ای:
براساس یک توافق کلی و اعتماد دو جانبه در حال رشد، اتحادیه اروپا، سه کشور اروپایی از توسعه برنامه هسته ای غیرنظامی ایران حمایت می کنند. این حمایت شامل کمک برای تخصیص تجهیزات مورد نیاز برای راکتورهای تحقیقی بیشتر در ایران و همکاری در دیگر حوزه های استفاده صلح آمیز از انرژی هسته ای، غیر از فعالیت های چرخه سوخت هسته ای است. اتحادیه اروپا، سه کشور اروپایی هم چنین از توسعه همکاری در زمینه هایی چون تولیدات رادیو ایزوتوپ ها تحقیقات پایه ای و استفاده صلح آمیز از انرژی هسته ای در حوزه کشاورزی و پزشکی، هم چنین ایجاد همکاری میان مقامات هماهنگ کننده میان اتحادیه اروپا، سه کشور اروپایی، ایران و آژانس به منظور همکاری برای طرح و اجرای رژیم های امنیتی استاندارد هسته ای بین المللی حمایت می کنند. اتحادیه اروپا، سه کشور اروپایی از آغاز مذاکره بر سر توافق میان ایران از سویی و آژانس بین المللی و اتحادیه اروپا از سوی دیگر، حمایت می کنند. اتحادیه اروپا، سه کشور اروپایی تصدیق می کنند که ایران باید دسترسی بیشتری به سوخت هسته ای مورد نیاز راکتورهای تحقیقی آب سبک که صنعت هسته ای غیرنظامی ایران را تشکیل می دهد، داشته باشد.
روسیه به طور رسمی تعهد کرده که سوخت هسته ای را در مدت زمان عمر مفید راکتورهای ساخت روسیه ایران تهیه کند. به منظور تضمین های بیشتر به ایران مبنی بر اینکه ایران می تواند در بلند مدت به تامین کنندگان خارجی تکیه کند، اتحادیه اروپا، سه کشور اروپایی چارچوبی را با ایران توسعه می دهند که چنین تضمین هایی را بدون صدمه زدن به توافقات دو جانبه بیشتری که تحت حمایت آژانس بین المللی انرژی اتمی به وحود آمده، به وجود می آورد. اتحادیه اروپا، سه کشور اروپایی راه های دسترسی به چنین تضمین هایی را شامل ایجاد و مکانیسم ذخایر سوخت پیشنهاد می کنند.
ایجاد اطمینان:
همکاری بلند مدت موثر میان ایران و جامعه بین المللی در حوزه هسته ای غیرنظامی نیازمند ایجاد مداوم اطمینان در دوره ای طولانی و قابل توجه است. چنانچه ایران خواهان تامین تضمین شده سوخت طی سال های آتی باشد، قادر خواهد بود اطمینان مورد نیاز را از طریق ایجاد یک تعهد الزام آور مبنی بر اینکه به فعالیت های چرخه سوخت نمی پردازد، به دست آورد. این امر شامل ساخت و کاربرد راکتورهای تحقیقی آب سبک و راکتورهای برق آب سبک نمی شود. چنین تضمینی به طور مشترک مواری با مکانیزم هایی که برای توافق کلی در نظر گرفته شده، مورد بازنگری قرار می گیرد. ایران، به عنوان یک عنصر اساسی مکانیسم ایجاد اطمینان بین المللی، متعهد می شود در یک تعهد الزام آور قانونی قبول کند از "NPT" خارج نشود و همه تجهیزات هسته ای ایران را تحت پادمان های آژانس انرژی اتمی قرار می دهد؛ پروتکل الحاقی "NPT" را هماهنگ با توافقات کنونی اش تا پایان 2005 تصویب کند، ضمنا، تا زمان تصویب آن، پروتکل الحاقی را کاملا اجرا کرده و با "IAEA" برای حل همه مباحث برجسته همکاری کند، با توافقات برای تهیه سوخت تازه خارج از ایران، موافقت کند و متعهد شود که همه سوخت مصرف شده را به تامین کنندگان اصلی باز گرداند. اتحادیه اروپا، سه کشور اروپایی انتظار دارند که ایران ساخت راکتور تحقیقاتی آب سنگین در اراک را که منجر به نگرانی هایی درباره گسترش سلاح های هسته ای شده، متوقف کند. اتحادیه اروپا، سه کشور اروپایی با ایران برای ایجاد گروهی به منظور شناسایی جایگزین هایی برای تسهیلات، تجهیزات و موادی که فقط کاربری غیرنظامی هسته ای داشته باشند، همکاری می کند. این گروه می تواند حوزه های جدیدی رای برای استخدام دانشمندان، تکنسین ها و کارگرانی که برای چنین تجهیزاتی استخدام شده اند، پیدا کند.
همکاری اقتصادی و تکنولوژی
یک توافق کلی می تواند به توسعه برنامه اقتصادی و فنی همکاری با ایران، تکمیل توافق همکاری و تجارت ایران، اتحادیه اروپا که ابزار اصلی برای توسعه بلند مدت روابط اقتصادی میان اتحادیه اروپا و ایران را فراهم می کند، منجر شود. اتحادیه اروپا، سه کشور اروپایی در یک توافق طولانی مدت:
اهمیت همکاری در بخش انرژی را برای روابط بلند مدت با ایران به رسمیت می شناسند.
آنها برای ایجاد سیاستی که به ایران به عنوان منبع بلند مدت نفت و گاز برای اتحادیه اروپا توجه کند و قدم هایی شامل گشایش مرکز تکنولوژی و مدیریتی انرژی ایران، اتحادیه اروپا به منظور توسعه همکاری عملی بردارد، آماده هستند.
ارتقای تجارت، سرمایه گذاری و انتقال تکنولوژی:
فعالیت برای رسیدن به نتیجه مذاکرات بر سر پیش نویس توافق همکاری و تجارت ایران، اتحادیه اروپا و یک توافق گفت و گوی سیاسی ایران، اتحادیه اروپا
حمایت سیاسی مداوم اروپا از پیوستن ایران به سازمان تجارت جهانی و حمایت فنی برای یاری رساندن به ایران به منظور اصلاحات و تطبیق فنی ضروری برای اقتصاد این کشور( به منظور عضویت در WTO)
موافقت برای ایجاد یک کارگاه مشترک کنترل صادرات برای اجرای قطعنامه 1540 شورای امنیت سازمان ملل و قوانین ملی، اتحادیه اروپا که امکان تبادل اطلاعات را فراهم کند و در نتیجه ایران قادر به ایجاد یک سیستم موثر کنترل صادرات شود.
تعهد برای توسعه همکاری دو جانبه فنی و علمی با ایران در حوزه های ویژه شامل تکنولوژی محیط زیست، تکنولوژی اطلاعات و ارتباطات، آموزش و پرورش و آموزش شغلی.
تقویت همکاری در حوزه هایی چون حمل و نقل هوایی، ایستگاه های راه آهن، حمل و نقل دریایی، زلزله شناسی، زیر ساختارها، صنعت کشاورزی و تغذیه و توریسم.
اتحادیه اروپا، سه کشور اروپایی و ایران توافق می کنند با حسن نیت این توافقنامه را اجرا کنند. این توافقنامه در هر 10 سال یکبار در سطح وزرا، مورد بازنگری قرار میگیرد. هر تغییری در توافقنامه باید مورد توافق طرفین قرار گیرد. اتحادیه اروپا، سه کشور اروپایی قصد دارند به منظور اطلاع رسانی و کسب توافق جامعه بین المللی توافق نهایی را منتشر کنند.