لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 22
پیل حرارتی
مقدمه
پیلهای حرارتی مهمترین جزء باتری حرارتی به شمار میآیند. باتریهای حرارتی ، باتریهایی هستند که بخاطر دارا بودن یک سری ویژگیهای منحصر به فرد ، برای استفاده در اهداف نظامی کاملا مناسب میباشند. در این مقاله پیلهای حرارتی معرفی و طبقه بندی میشوند. سپس اجزای پیلهای حرارتی شامل آند ، کاتد و الکترولیت این پیلها و مواد تشکیل دهنده آنها معرفی میشود. باتری حرارتی یک منبع تولید کننده جریان الکتریکی است که به علت دارا بودن چگالی جریان بالا و قابلیت اطمینان زیاد و عمر طولانی ، به منظور تأمین جریان الکتریکی مورد نیاز در سلاحهای نظامی بکار میروند. این جریان الکتریکی بوسیله تعدادی پیل تولید میشود. بر حسب اینکه جریان مصرفی مورد نیاز چقدر باشد، تعداد پیلها ، نحو ه آرایش آنها به صورت سری یا موازی و نیز ابعاد الکترودها متفاوت خواهد بود. ساختمان پیل
هر پیل از سه بخش اصلی و سه بخش فرعی تشکیل شده است. اجزای اصلی عبارتند از: کاتد (قطب منفی) ، الکترولیت و آند (قطب مثبت). اجزای فرعی نیز عبارتند از جمع کننده جریان قطب مثبت ، جمع کننده جریان قطب منفی و منابع گرمایی. برخلاف سایر پیلهای شیمیایی که دارای الکترولیت مایع هستند، در پیلهای حرارتی ، الکترولیت در دمای محیط ، جامد و غیر هادی است، لذا در شرایط معمولی پیل غیر فعال خواهد بود. اما زمانی که الکترولیت به صورت مذاب در آید، یونیزه میشود و هدایت الکتریکی بسیار زیادی پیدا میکند. ابن عامل باعث میشود تا واکنش الکتروشیمیایی بین آند و کاتد برقرار شود و جریان الکتریکی در پیل تولید گردد. این جریان توسط جمع کنندهها انتقال مییابد. الکترولیت زمانی به صورت مذاب در میآید که تا دمایی بالاتر از نقطه ذوبش گرم شود. این گرما از طریق منابع گرمایی موجود در لابلای پیلها تأمین میشود.
طبقه بندی پیلهای حرارتی
پیلهای حرارتی انواع گوناگونی دارند؛ اما میتوان بطور کلی آنها را به دو دسته پیلهای لیتیومی و پیلهای کلسیومی تقسیم نمود. طیف گستردهای از مواد به منظور ساخت اجزای پیل مورد استفاده قرار میگیرند؛ ولی نحوه انتخاب آنها باید به گونهای باشد که بتواند بر حسب نیاز ، بهترین سطح ولتاژ و جریان را تأمین نماید. در پیلهای لیتیومی از لیتیم و ترکیبات آن و در پیلهای کلسیومی از کلسیم و ترکیبات آن برای ساخت قطعات اصلی پیل استفاده میگردد. محدوده ولتاژ قابل تأمین توسط هر پیل در حدود 1.5 تا 3.5 ولت است.
پیلهای لیتیومی
آند
در این پیلها ابتدا از لیتیوم خالص به عنوان آند استفاده میشد؛ اما استفاده از این ماده مشکلاتی را به همراه داشت. لیتیوم خالص بیش از اندازه فعال است و کار کردن با آن آسان نیست. از طرفی دارای نقطه ذوب پایینی است و در دمای 181 درجه سانتیگراد ذوب میشود. در نتیجه در درجه حرارت عملکرد پیل ، به صورت مذاب در میآمد و میتواند به سمت بیرون نشت پیدا کرده و باعث اتصال کوتاه شدن پیل میگردید. به همین دلیل مجبور بودند لیتیوم مذاب را بوسیله یک قطعه اسفنجی مهار نمایند که این کار نیز مشکلاتی را به همراه داشت. لذا دیگر از لیتیوم خالص برای اند استفاده نمی شود، بلکه از آلیاژهای لیتیوم مانند لیتیوم- آلومینیوم و لیتیوم - سیلسیوم برای این منظور استفاده میشود. این کار مزایای زیادی دارد: از جمله اینکه نقطه ذوب را افزایش میدهد. به گونهای که در درجه حرارت عملکرد پیل ، آند میتواند پایداری حرارتی خود را حفظ نماید. از سوی دیگر ساخت و کاربردی کردن آن آسانتر است.بر طبق نمودار فازی لیتیوم - سیلیسیوم ، با افزایش درصد سیلیسیم در آلیاژ ، نقطه ذوب ترکیب حاصل افزایش مییابد. بهترین حالت به ازای ترکیب 33 درصد لیتیوم و 67 درصد سیلیسیوم بدست میآید که دارای نقطه ذوب 760 درجه است. اما از آنجا که مقدار لیتیوم موجود در این ترکیب کم ایست. برای استفاده به عنوان آند چندان مناسب نیست. برطبق نمودار ، ترکیب 44 درصد لیتیوم و 56 درصد سیلیسیوم مناسبترین آند است؛ چرا که دارای نقطه ذوب 730 درجه است و میزان فعالیت آن نیز به اندازه کافی میباشد.
الکترولیت
بطور معمول از نمکهای هالیدی فلزات قلیایی برای ساخت الکترولیت استفاده میشود. این کار بخاطر قابلیت هدایت الکتریکی بسیار بالای این نمکها در حالت مذاب است. نقطه ذوب هر یک از این نمکها بالاست. در صورتی که الکترولیت باید دارای نقطه ذوب به نسبت پایینی باشد تا تأمین گرمای لازم برای رسیدن به نقطه ذوب آسان باشد. به همین دلیل از ترکیب یوتکتیک دوگانه یا سه گانه این نمکها استفاده میشود. ترکیب یوتکتیک به ترکیبی گفته میشود که کمینه نقطه ذوب را به ازای درصد معینی از اجزای تشکیل دهندهاش دارا باشد. در پیلهای حرارتی بطور معمول از ترکیب یوتکتیک کلریدهای لیتیوم و پتاسیم به عنوان الکترولیت استفاده میشود. نقطه ذوب هر یک از این دو ماده به ترتیب 614 و 790 درجه سانتیگراد است. در حالی که نقطه ذوب ترکیب یوتکتیک آنها برابر با 352 درجه سانتیگراد است.در درجه حرارت عملکرد پیل ، الکترولیت به صورت مذاب در میآید و ممکن است به بیرون نشت پیدا کند و از آنجا که هادی است، میتواند باعث اتصال کوتاه پیل گردد. به منظور جلوگیری از این پدیده ، مقدار معینی
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 22
پیل حرارتی
مقدمه
پیلهای حرارتی مهمترین جزء باتری حرارتی به شمار میآیند. باتریهای حرارتی ، باتریهایی هستند که بخاطر دارا بودن یک سری ویژگیهای منحصر به فرد ، برای استفاده در اهداف نظامی کاملا مناسب میباشند. در این مقاله پیلهای حرارتی معرفی و طبقه بندی میشوند. سپس اجزای پیلهای حرارتی شامل آند ، کاتد و الکترولیت این پیلها و مواد تشکیل دهنده آنها معرفی میشود. باتری حرارتی یک منبع تولید کننده جریان الکتریکی است که به علت دارا بودن چگالی جریان بالا و قابلیت اطمینان زیاد و عمر طولانی ، به منظور تأمین جریان الکتریکی مورد نیاز در سلاحهای نظامی بکار میروند. این جریان الکتریکی بوسیله تعدادی پیل تولید میشود. بر حسب اینکه جریان مصرفی مورد نیاز چقدر باشد، تعداد پیلها ، نحو ه آرایش آنها به صورت سری یا موازی و نیز ابعاد الکترودها متفاوت خواهد بود. ساختمان پیل
هر پیل از سه بخش اصلی و سه بخش فرعی تشکیل شده است. اجزای اصلی عبارتند از: کاتد (قطب منفی) ، الکترولیت و آند (قطب مثبت). اجزای فرعی نیز عبارتند از جمع کننده جریان قطب مثبت ، جمع کننده جریان قطب منفی و منابع گرمایی. برخلاف سایر پیلهای شیمیایی که دارای الکترولیت مایع هستند، در پیلهای حرارتی ، الکترولیت در دمای محیط ، جامد و غیر هادی است، لذا در شرایط معمولی پیل غیر فعال خواهد بود. اما زمانی که الکترولیت به صورت مذاب در آید، یونیزه میشود و هدایت الکتریکی بسیار زیادی پیدا میکند. ابن عامل باعث میشود تا واکنش الکتروشیمیایی بین آند و کاتد برقرار شود و جریان الکتریکی در پیل تولید گردد. این جریان توسط جمع کنندهها انتقال مییابد. الکترولیت زمانی به صورت مذاب در میآید که تا دمایی بالاتر از نقطه ذوبش گرم شود. این گرما از طریق منابع گرمایی موجود در لابلای پیلها تأمین میشود.
طبقه بندی پیلهای حرارتی
پیلهای حرارتی انواع گوناگونی دارند؛ اما میتوان بطور کلی آنها را به دو دسته پیلهای لیتیومی و پیلهای کلسیومی تقسیم نمود. طیف گستردهای از مواد به منظور ساخت اجزای پیل مورد استفاده قرار میگیرند؛ ولی نحوه انتخاب آنها باید به گونهای باشد که بتواند بر حسب نیاز ، بهترین سطح ولتاژ و جریان را تأمین نماید. در پیلهای لیتیومی از لیتیم و ترکیبات آن و در پیلهای کلسیومی از کلسیم و ترکیبات آن برای ساخت قطعات اصلی پیل استفاده میگردد. محدوده ولتاژ قابل تأمین توسط هر پیل در حدود 1.5 تا 3.5 ولت است.
پیلهای لیتیومی
آند
در این پیلها ابتدا از لیتیوم خالص به عنوان آند استفاده میشد؛ اما استفاده از این ماده مشکلاتی را به همراه داشت. لیتیوم خالص بیش از اندازه فعال است و کار کردن با آن آسان نیست. از طرفی دارای نقطه ذوب پایینی است و در دمای 181 درجه سانتیگراد ذوب میشود. در نتیجه در درجه حرارت عملکرد پیل ، به صورت مذاب در میآمد و میتواند به سمت بیرون نشت پیدا کرده و باعث اتصال کوتاه شدن پیل میگردید. به همین دلیل مجبور بودند لیتیوم مذاب را بوسیله یک قطعه اسفنجی مهار نمایند که این کار نیز مشکلاتی را به همراه داشت. لذا دیگر از لیتیوم خالص برای اند استفاده نمی شود، بلکه از آلیاژهای لیتیوم مانند لیتیوم- آلومینیوم و لیتیوم - سیلسیوم برای این منظور استفاده میشود. این کار مزایای زیادی دارد: از جمله اینکه نقطه ذوب را افزایش میدهد. به گونهای که در درجه حرارت عملکرد پیل ، آند میتواند پایداری حرارتی خود را حفظ نماید. از سوی دیگر ساخت و کاربردی کردن آن آسانتر است.بر طبق نمودار فازی لیتیوم - سیلیسیوم ، با افزایش درصد سیلیسیم در آلیاژ ، نقطه ذوب ترکیب حاصل افزایش مییابد. بهترین حالت به ازای ترکیب 33 درصد لیتیوم و 67 درصد سیلیسیوم بدست میآید که دارای نقطه ذوب 760 درجه است. اما از آنجا که مقدار لیتیوم موجود در این ترکیب کم ایست. برای استفاده به عنوان آند چندان مناسب نیست. برطبق نمودار ، ترکیب 44 درصد لیتیوم و 56 درصد سیلیسیوم مناسبترین آند است؛ چرا که دارای نقطه ذوب 730 درجه است و میزان فعالیت آن نیز به اندازه کافی میباشد.
الکترولیت
بطور معمول از نمکهای هالیدی فلزات قلیایی برای ساخت الکترولیت استفاده میشود. این کار بخاطر قابلیت هدایت الکتریکی بسیار بالای این نمکها در حالت مذاب است. نقطه ذوب هر یک از این نمکها بالاست. در صورتی که الکترولیت باید دارای نقطه ذوب به نسبت پایینی باشد تا تأمین گرمای لازم برای رسیدن به نقطه ذوب آسان باشد. به همین دلیل از ترکیب یوتکتیک دوگانه یا سه گانه این نمکها استفاده میشود. ترکیب یوتکتیک به ترکیبی گفته میشود که کمینه نقطه ذوب را به ازای درصد معینی از اجزای تشکیل دهندهاش دارا باشد. در پیلهای حرارتی بطور معمول از ترکیب یوتکتیک کلریدهای لیتیوم و پتاسیم به عنوان الکترولیت استفاده میشود. نقطه ذوب هر یک از این دو ماده به ترتیب 614 و 790 درجه سانتیگراد است. در حالی که نقطه ذوب ترکیب یوتکتیک آنها برابر با 352 درجه سانتیگراد است.در درجه حرارت عملکرد پیل ، الکترولیت به صورت مذاب در میآید و ممکن است به بیرون نشت پیدا کند و از آنجا که هادی است، میتواند باعث اتصال کوتاه پیل گردد. به منظور جلوگیری از این پدیده ، مقدار معینی
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 22
پیل حرارتی
مقدمه
پیلهای حرارتی مهمترین جزء باتری حرارتی به شمار میآیند. باتریهای حرارتی ، باتریهایی هستند که بخاطر دارا بودن یک سری ویژگیهای منحصر به فرد ، برای استفاده در اهداف نظامی کاملا مناسب میباشند. در این مقاله پیلهای حرارتی معرفی و طبقه بندی میشوند. سپس اجزای پیلهای حرارتی شامل آند ، کاتد و الکترولیت این پیلها و مواد تشکیل دهنده آنها معرفی میشود. باتری حرارتی یک منبع تولید کننده جریان الکتریکی است که به علت دارا بودن چگالی جریان بالا و قابلیت اطمینان زیاد و عمر طولانی ، به منظور تأمین جریان الکتریکی مورد نیاز در سلاحهای نظامی بکار میروند. این جریان الکتریکی بوسیله تعدادی پیل تولید میشود. بر حسب اینکه جریان مصرفی مورد نیاز چقدر باشد، تعداد پیلها ، نحو ه آرایش آنها به صورت سری یا موازی و نیز ابعاد الکترودها متفاوت خواهد بود. ساختمان پیل
هر پیل از سه بخش اصلی و سه بخش فرعی تشکیل شده است. اجزای اصلی عبارتند از: کاتد (قطب منفی) ، الکترولیت و آند (قطب مثبت). اجزای فرعی نیز عبارتند از جمع کننده جریان قطب مثبت ، جمع کننده جریان قطب منفی و منابع گرمایی. برخلاف سایر پیلهای شیمیایی که دارای الکترولیت مایع هستند، در پیلهای حرارتی ، الکترولیت در دمای محیط ، جامد و غیر هادی است، لذا در شرایط معمولی پیل غیر فعال خواهد بود. اما زمانی که الکترولیت به صورت مذاب در آید، یونیزه میشود و هدایت الکتریکی بسیار زیادی پیدا میکند. ابن عامل باعث میشود تا واکنش الکتروشیمیایی بین آند و کاتد برقرار شود و جریان الکتریکی در پیل تولید گردد. این جریان توسط جمع کنندهها انتقال مییابد. الکترولیت زمانی به صورت مذاب در میآید که تا دمایی بالاتر از نقطه ذوبش گرم شود. این گرما از طریق منابع گرمایی موجود در لابلای پیلها تأمین میشود.
طبقه بندی پیلهای حرارتی
پیلهای حرارتی انواع گوناگونی دارند؛ اما میتوان بطور کلی آنها را به دو دسته پیلهای لیتیومی و پیلهای کلسیومی تقسیم نمود. طیف گستردهای از مواد به منظور ساخت اجزای پیل مورد استفاده قرار میگیرند؛ ولی نحوه انتخاب آنها باید به گونهای باشد که بتواند بر حسب نیاز ، بهترین سطح ولتاژ و جریان را تأمین نماید. در پیلهای لیتیومی از لیتیم و ترکیبات آن و در پیلهای کلسیومی از کلسیم و ترکیبات آن برای ساخت قطعات اصلی پیل استفاده میگردد. محدوده ولتاژ قابل تأمین توسط هر پیل در حدود 1.5 تا 3.5 ولت است.
پیلهای لیتیومی
آند
در این پیلها ابتدا از لیتیوم خالص به عنوان آند استفاده میشد؛ اما استفاده از این ماده مشکلاتی را به همراه داشت. لیتیوم خالص بیش از اندازه فعال است و کار کردن با آن آسان نیست. از طرفی دارای نقطه ذوب پایینی است و در دمای 181 درجه سانتیگراد ذوب میشود. در نتیجه در درجه حرارت عملکرد پیل ، به صورت مذاب در میآمد و میتواند به سمت بیرون نشت پیدا کرده و باعث اتصال کوتاه شدن پیل میگردید. به همین دلیل مجبور بودند لیتیوم مذاب را بوسیله یک قطعه اسفنجی مهار نمایند که این کار نیز مشکلاتی را به همراه داشت. لذا دیگر از لیتیوم خالص برای اند استفاده نمی شود، بلکه از آلیاژهای لیتیوم مانند لیتیوم- آلومینیوم و لیتیوم - سیلسیوم برای این منظور استفاده میشود. این کار مزایای زیادی دارد: از جمله اینکه نقطه ذوب را افزایش میدهد. به گونهای که در درجه حرارت عملکرد پیل ، آند میتواند پایداری حرارتی خود را حفظ نماید. از سوی دیگر ساخت و کاربردی کردن آن آسانتر است.بر طبق نمودار فازی لیتیوم - سیلیسیوم ، با افزایش درصد سیلیسیم در آلیاژ ، نقطه ذوب ترکیب حاصل افزایش مییابد. بهترین حالت به ازای ترکیب 33 درصد لیتیوم و 67 درصد سیلیسیوم بدست میآید که دارای نقطه ذوب 760 درجه است. اما از آنجا که مقدار لیتیوم موجود در این ترکیب کم ایست. برای استفاده به عنوان آند چندان مناسب نیست. برطبق نمودار ، ترکیب 44 درصد لیتیوم و 56 درصد سیلیسیوم مناسبترین آند است؛ چرا که دارای نقطه ذوب 730 درجه است و میزان فعالیت آن نیز به اندازه کافی میباشد.
الکترولیت
بطور معمول از نمکهای هالیدی فلزات قلیایی برای ساخت الکترولیت استفاده میشود. این کار بخاطر قابلیت هدایت الکتریکی بسیار بالای این نمکها در حالت مذاب است. نقطه ذوب هر یک از این نمکها بالاست. در صورتی که الکترولیت باید دارای نقطه ذوب به نسبت پایینی باشد تا تأمین گرمای لازم برای رسیدن به نقطه ذوب آسان باشد. به همین دلیل از ترکیب یوتکتیک دوگانه یا سه گانه این نمکها استفاده میشود. ترکیب یوتکتیک به ترکیبی گفته میشود که کمینه نقطه ذوب را به ازای درصد معینی از اجزای تشکیل دهندهاش دارا باشد. در پیلهای حرارتی بطور معمول از ترکیب یوتکتیک کلریدهای لیتیوم و پتاسیم به عنوان الکترولیت استفاده میشود. نقطه ذوب هر یک از این دو ماده به ترتیب 614 و 790 درجه سانتیگراد است. در حالی که نقطه ذوب ترکیب یوتکتیک آنها برابر با 352 درجه سانتیگراد است.در درجه حرارت عملکرد پیل ، الکترولیت به صورت مذاب در میآید و ممکن است به بیرون نشت پیدا کند و از آنجا که هادی است، میتواند باعث اتصال کوتاه پیل گردد. به منظور جلوگیری از این پدیده ، مقدار معینی
لینک دانلود و خرید پایین توضیحات
دسته بندی : پاورپوینت
نوع فایل : .ppt ( قابل ویرایش و آماده پرینت )
تعداد اسلاید : 30 اسلاید
قسمتی از متن .ppt :
مدیریت انرژی حرارتی وتکنولوژی ارتقائ انرژی حرارتی
مقدمه: مراحل صرفه جویی انرژی
.
قدم اول :
بهبود وارتقاء بهره برداری از سیستم: پتانسیل های صرفه جویی با هزینه کم یا بدون هزینه
. مصرف متعادل برق مصرفی در فازهای مختلف
. بررسی وضعیت دیماند وماکسیمم مصرف
. بر رسی امکان ذخیره انرژی
. تنظیم کردن نسبت هوای مشعل
. تغییرات در لی آوت و تایمینگ فرایند تولید
. سرویس نگهداری منظم تجهیزات
. عایقکاری
قدم دوم
بهبود وارتقاء تجهیزات: پتانسیل های صرفه جویی با هزینه متوسط
. عایق کاری بدنه کوره
در دودکش . استفاده از پیشگرمکن هوا . خازن گذاری در مدار برق مصرفی
. اصلاح هارمونیک ها
مقدمه: مراحل صرفه جویی انرژی
قدم سوم
بهبود وارتقاء فرایند تولید: پتانسیل های صرفه جویی انرژی با سرمایه گذاری زیاد
. تعویض کوره ها با کوره های راندمان بالا
. استفاده از انورتور ها
مقدمه: مراحل صرفه جویی انرژی
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 79
بررسی توزیع ولتاژ و شار حرارتی در قرصهای Zno در برقگیرهای فشار قوی با کمک روش عناصر محدود :هر تجهیز در سیستم فشار قوی برای ولتاژ معینی ساخته میشود ولی درطول کار، اضافه ولتاژهایی پیش میآیند که ممکن است برای دستگاه خطرناک باشند. به منظور جلوگیری از خطر اضافه ولتاژها باید از طرفی مقدار اضافه ولتاژ را تا حد ممکن پایین آورد و از طرف دیگر استقامت عایقی تجهیز را بیشتر از سطح اضافه ولتاژهایی که ممکن است حادث شوند، انتخاب کرد. اضافه ولتاژها را نمیتوان به طور کلی حذف کرد بنابراین برای جلوگیری از آسیبدیدن تجهیزات شبکه، باید تا حد امکان آنها را محدود کرد. برقگیرهای اکسید روی یکی از رایجترین تجهیزاتی هستند که بدین منظور به ویژه برای محافظت از ترانسهای گران قیمت فشار قوی مورد استفاده قرار میگیرند. برقگیرها باعث میشوند که دامنه اضافه ولتاژهای اعمال شده به تجهیز فشار قوی کاهش یافته و در نتیجه امکان سوختن آن کمتر شود. توزیع میدان الکتریکی دردستگاههای فشار قوی و ایزولاتورها علاوه بر خواص الکتریکی المانها و نوع ماده عایقی به کار رفته در آنها، به شکل و محل قرار گرفتن الکترودهای فلزی نیز بستگی دارد. بنابراین به سبب بکارگیری قسمتهای متعدد فلزی در آنها و ایجاد خازنهای پراکندگی، دارای توزیع غیر یکنواخت ولتاژ هستند، اندازهگیری ولتاژ و جریان در ترمینالهای برقگیر، روش مناسبی برای نشان دادن تاثیر شکل و محل قرار گرفتن الکترودهای شناور بر نحوه توزیع میدان نخواهد بود. روشهای تست عملی برای اندازهگیری ولتاژ و جریان درنقاط مختلف برقگیر نیز طبق معمول وقتگیر و پرهزینه هستند. بنابراین بهتر است به دنبال جایگزین عملی مناسب بدین منظور باشیم. برقگیر اکسید روی فاقد فاصله هوایی است و همواره تحت تنش ولتاژ قرار دارد. در نتیجه جریان نشتی کوچکی در رنج چند میکروآمپر از آن میگذرد. در حالت کار عادی سیستم (ولتاژهای نزدیک به ولتاژ نامی شبکه)، مؤلفه خازنی جریان نشتی در برقگیر اکسید روی مولفه غالب است به طوریکه میتواند حتی به 40 برابر مولفه مقاومتی نیز برسد. بنابراین در این شرایط اگر سطح خارجی برقگیر را عاری از آلودگی فرض کنیم، میتوان شبکه خازنی معادلی را برای برقگیر ارایه داد. در اینجا روشی برای تعیین شبکه خازنی معادل برقگیر ارایه شده است که هم برای برقگیر سالم و هم برای برقگیر آسیبدیده کاربرد دارد در اینجا به کمک روش عناصر محدود، نخست مقادیر عددی میدان درنقاط مختلف سیستم مورد نظر محاسبه شده است. سپس مقادیر به دست آمده برای میدان جهت محاسبه بارهای القایی در الکترودها به کار گرفته میشوند. در نهایت با داشتن بار کلی القا شده و همچنین مقدار ولتاژ در هر الکترود، ظرفیتهای خازنی مختلف در برقگیر محاسبه میشوند. توزیع ولتاژ در برقگیر به گونهای است که قسمتهای بالایی که به الکترود فشار قوی نزدیکترند، تحت تنش ولتاژ بالاتر قرار دارند و بالطبع باید تنشهای حرارتی بیشتری را نیز تحمل کنند. بنابراین باید تا حد امکان توزیع ولتاژ را یکنواخت کرد. بعضی تغییرات در شکل هندسی اجزای برقگیر میتواند به مانند خواص الکتریکی اجزای تشکیل دهنده آن، در توزیع ولتاژ تاثیرگذار باشد. لذا عواملی مانند شکستگی سپرها و تاثیر Grading Ring و … مورد بررسی قرار گرفتهاند. کلیه شبیهسازیها به روش عناصر محدود به کمک نرمافزار Pc-Opera 8.7 در فضای سهبعدی انجام شدهاند. از نقطهنظر حرارتی نیز افزایش حرارت ناشی از جذب انرژی صاعقه یا اضافه ولتاژ در المان اکسید روی میتواند باعث ناپایداری حرارتی یا ایجاد Hot Spot در نقاطی از برقگیر شود. با بررسی توزیع حرارت در برقگیر نقاطی که تحت تنش حرارتی بیشتری قرار گرفته و باید در طراحی به آنها توجه کرد مشخص شده است. بررسی توزیع حرارت در برقگیر نیز به روش عناصر محدود و به کمک نرمافزار Pc-Opera 8.7 که قابلیت کوپل کردن میدانهای الکتریکی و حرارتی را داراست، در فضای دو بعدی انجام گرفته است. بررسی و امکانسنجی انتقال تکنولوژی ساخت توربینهای بادی جهت نیروگاههای بادی :یکی از مسائلی که بشر در سالهای پایانی قرن بیستم به طور گستردهای به آن پرداخت، معضلات تولید انرژی با سوختهای فسیلی و محاسن فراوان انرژیهای پاک بوده است. این نوع از انرژیها را انرژیهای تجدیدپذیر نیز میگویند. عمدهترین این انرژیها: خورشیدی، آبی، زمینگرمایی و بادی است. از میان این انواع، انرژی باد به خاطر نیاز به سرمایهگذاری کمتر و بازدهی بیشتر، همچنین تکنولوژی سادهتر به سرعت مورد اقبال واقع شده و بهرهبرداری از آن به طور گستردهای در کشورهای پیشرفته آغاز شد.